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AFIT-ENV-MS-18-M-201
Abstract

In 2013, the Department of Defense (DoD) required its services to implement
advanced metering for the purpose of reducing energy usage (Department of Defense,
2013). Additionally, the DoD has aimed to improve its ability to assure a continuous
energy supply to all of its installations. This study investigated processes for applying
advanced meters on Air Force bases to increase energy assurance. This study also
identified strategies for using advanced meters to influence infrastructure funding. This
was accomplished through the use of extensive advanced meter data. The data was
analyzed for outages and a procedure was created to locate outages in energy usage
datasets by using means and standard deviations. Advanced meters with more frequent
data collection were able to locate outages easier than meters with less frequent data
collection. Advanced meters do not only reduce energy usage, but they also have the
ability to report outages. By collecting outage data, funding can be applied to the least

reliable electrical infrastructure.
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INFLUENCING EFFECTIVE ELECTRICAL DISTRIBUTION
MODERNIZATION THROUGH ADVANCED METERING

I. Introduction

1.1 Background

The United States Department of Defense (DoD) defines energy resilience as “the
ability to prepare for and recover from energy disruptions that impact mission assurance
on military installations”(Department of Defense, 2016a). This energy resilience is
increased and protected by the expenditure of tax payer dollars to modernize and improve
utility systems (Department of Defense, 2004). The then Assistant Secretary of the Air
Force for Installations, Environment, and Energy, Ms. Miranda Ballentine, stated, “Over
the last 10 to 15 years our missions have become more and more dependent on [the]
steady flow of electrons.” She also stated that the steady flow of electrons are as
important, for some missions, as jet fuel to the Air Force’s aircraft (Pew Charitable
Trusts, 2017). The leaders of the United States Air Force understand that accomplishing
core missions to solidify the United States’ National Security requires “significant
amounts of energy” (Department of the Air Force, 2017b). This significant amount
equated to $3.5 billion or 198 TBtu of installation energy in Fiscal Year 2016 (FY 16) for
the DoD (Office of the Assistant Secretary of Defense for Energy Installations and
Environment, 2016b). This amount of energy is equivalent to three times the annual
energy produced by the Grand Coulee Dam, the largest power plant in North America

1
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(United States Department of the Interior: Bureau of Reclamation, 2015). Military
leaders also understand that clear access to energy is also vital to National Security. The
DoD has set up an energy strategy to ensure “resilient, available, reliable, and continuous
power” is provided to its installations (Office of the Assistant Secretary of Defense for
Energy Installations and Environment, 2016b).

The Air Force’s strategy includes “improving resiliency” by seeking to “mitigate
impacts from disruptions in energy supplies to critical assets, installations, and priority
missions” (Department of the Air Force, 2017b). These disruptions and the recovery of
those disruptions are outlined in Air Force Policy Directive 90-17, where it states that
“The Air Force will...[b]e able to power any infrastructure identified as critical to the
performance of mission essential functions independent of the utility grid for the period
of time needed to relocate the mission or for at least seven days, whichever is longer”
(Department of the Air Force, 2016¢). The direction of a minimum of seven days grid
independence allows mission owners to have an objective and a goal for planning and
infrastructure upgrades.

Issues arise when infrastructure upgrades must be tailored to fit in the bounds of a
finite construction effort where they compete against other projects at bases around the
world for funding. This competition is necessary because the DoD cannot fund all of its
facility requirements. Choosing which energy project to fund in the Air Force is guided
by the Secretary of the Air Force’s priority of “Cost-Effective Modernize...to increase

the lethality of the force” (Secretary of the Air Force, 2017). Due of prioritization
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models, if the impact of an energy project is not tangible, then the project does not get
funded (see section 2.4 Asset Management). Identifying exactly where the issues are and
where funding needs to be sent can be answered by applying data from advanced
electrical meters.

Electrical metering of “all Federal buildings” is required by the National Energy
Conservation Policy Act (The United States Congress, 2005). A 2013 policy
memorandum from the Office of the Secretary of Defense further outlined additional
metering requirements for the DoD. Contained therein was the goal of capturing 60
percent of the DoD’s electrical energy usage by year 2020 through the use of “advanced
meters” (Air Force Civil Engineer Center, 2017a; Department of Defense, 2013).
Additionally, a five percent energy cost savings was used to justify the installation costs
of these meters (Department of Defense, 2013). These meters have the ability to meet
congressional requirements while also identifying issues in real property and electrical

infrastructure owned by the Air Force and the DoD.

1.2 Problem Statement

The DoD seeks to minimize the number of utility outages experienced on its
installations. The DoD requires all installations to report utility outage details in order to
inform Congress on the status of its energy usage (The United States Congress, 2017b).
The causes of utility outages for the DoD during the last five fiscal years are shown in
Figure 1; the largest cause being equipment failure as shown in Figure 2. In an effort to
reduce these outages and increase the quality of power, the DoD has created energy

3
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objectives. These objectives are: reduce demand, expand supply, and adapt future forces
and technologies (Office of the Assistant Secretary of Defense for Energy Installations
and Environment, 2016b). If focus is placed on modernizing and upgrading the
equipment, equipment failure could become a smaller percentage of the problem. The

issue remains to identify where exactly to modernize and upgrade.

Cause of DoD Outages Lasting Longer
than 8 hours

100%

80%

60%

40%

20%

0%
FY12 FY13 FY14 FY15 FY16

m Equipment Failure = mPlanned Maintenance
m Act of Nature m Other

Figure 1. Cause of DoD Outages Lasting Longer than 8 hour
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Number of DoD Outages Lasting Longer
than 8 hours by Cause

= Equipment
Failure

= Planned
Maintenance

» Act of Nature

m Other

Figure 2. (FY12-16) Number of DoD Outages Lasting Longer than 8 hours by Cause

Without clear understanding of where the exact issues lay, infrastructure funds
can be spent in less than optimum ways. The DoD and the Air Force fund energy
projects through the same appropriations and financial channels that other infrastructure
components fall under (Department of Defense, 2004). This makes it difficult for energy
projects to stand out amongst the rest of the projects that also compete for this money.
With a better understanding of where the weakest links in the energy network exist, more
directed and equitable funding can be disbursed. This understanding can be gained with

the use of electrical energy meter data.

1.3 Research Objectives
The objective of this research is to develop best practices for the Advanced
Metering Infrastructure (AMI) in order to provide the greatest energy resilience impact

for the minimum economic input. Additionally, this research aims to build a framework
5
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for pin-pointing the most unreliable components of electrical distribution systems at
individual installations. This research effort is also geared towards evaluating the current
prioritization of energy related projects and how applying advanced meter data to those
priorities could assist in funding more effective projects. With a more informed strategy
of how to manage the electrical distribution systems, more fiscally minded investments

can be made to improve the DoD’s energy resilience.

1.4 Research Focus

The focus of this research is to better inform decision makers on the best way to
spend the next available energy dollar. Before spending money on modernizing electrical
distribution networks the Air Force needs to know where to apply that funding. The Air
Force recognizes the importance of meter implementation and how it can “drive cost-
effective, energy management and investment practices,” but more can be done to make
these far-reaching principles a reality throughout the Air Force (Department of the Air
Force, 2016b). It is imperative to ensure taxpayer dollars are being spent effectively and

efficiently on these investments especially with an increasingly diminishing DoD budget.

1.5 Investigative Questions
Investigative questions help give more focus to the research. Three main
questions for this thesis on energy resilience and advanced metering are as follows:
i.  Can outages be found using historical advanced meter data with Means and
Standard Deviations?

A. If so, what Standard Deviation should be used?
6
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ii.  What is the optimum data interval and combination to identify outages using
historical advanced meter data?
iii.  How does advanced meter data affect electrical grid modernization planning

including advanced energy production technology?

1.6 Methodology

The methodology used in this research was built around Sensitivity Analysis.
These methods will be further explained and applied in Chapter 3. Sensitivity Analysis
will be conducted in order to identify electrical outages using different meter data
intervals and configurations. Simulations and data analysis were primarily built upon
Pecan Street Data from the University of Texas at Austin; a residential advance meter
database. Findings were tested against electrical distribution networks and electrical
energy usage from Ellsworth Air Force Base (AFB). Applications that were used in the
thesis are the Microgrid Design Tool Kit from the Sandia National Laboratory and a tool
developed by the Massachusetts Institute of Technology Lincoln Laboratory Energy

Systems Group.

1.7 Assumptions/Limitations

The assumptions and limitations of this study are primarily based on the nature of
the current data and information that is available within the DoD. Energy metering,
outage and consumption data through the DoD Annual Energy Management Report and

data obtained by facility operators are assumed to be accurate to the point that clear
7
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conclusions can be based. A limitation of this thesis is that costs of advanced meters are

not investigated or applied in the analysis.

1.8 Implications

Possible implications include a refined way of looking at meter data to inform the
investments the Air Force makes on its electrical distribution systems. Under the current
prioritization models for utility projects, including electrical distribution, incorrect
ranking is occurring inherently because models are not perfect. If electrical distribution
projects for the Air Force are documented with outage information, then more equitable
funding can be dispersed for important but misrepresented projects. Doing so would help

the Air Force make more objective decisions thus improving their decision making

ability.
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II. Literature Review

2.1 Introduction

The purpose of this chapter is to provide the baseline for the research of this
thesis. Much work as already been done in the fields of advanced metering, military
facility asset management and infrastructure modernization. By exploring these and
other research topics, synergistic benefits can be seen by applying these topics cross

functionally.

2.2 Definitions

When investigating the quality of power at a distribution level three related
definitions are vital to understand: resilience, availability, and reliability. First, energy
resilience is defined by DoD Instruction 4170.11, Installation Energy Management, as
“the ability to prepare for and recover from energy disruptions that impact mission
assurance on military installations” (Department of Defense, 2016a). Thus, military
energy resilience is the ability to minimize the impact on mission accomplishment from a
distribution outage or disruption. The Air Force’s approach to energy management is
defined by the mantra, “Mission assurance through energy assurance” while
concentrating on energy resilience (Department of the Air Force, 2016¢).

Next, Power availability is defined by Army Technical Manual (TM) 5-698-1, as
“the percentage of time that a system is available to perform its required function(s)”

(Department of the Army, 2007). The Institute of Electrical and Electronic Engineers
9
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(IEEE) similarly, but with more expansion, define availability as “the ability of an item
under combined aspects of its reliability, maintainability, and maintenance support to
perform its required function at a stated instant of time or over a stated period of time”
(Institute of Electrical and Electronic Engineers, 2007). This makes availability a
measure of access to electricity to perform an intended function. Availability is
sometimes measured in unserved load in watt-hours, the amount of energy that would
have been used if electricity was available (N Judson, Pina, Dydek, Castillo, & Van
Broekhoven, 2016; Nick Judson & Pina, 2017).

Lastly, reliability is also defined by Army TM 5-698-1 as “the probability and
frequency of failures (or more correctly, the lack of failures)” (Department of the Army,
2007). Again, the IEEE also defines reliability as, “the ability of a component or system
to perform required functions under stated conditions for a stated period of time”
(Institute of Electrical and Electronic Engineers, 2007). Reliability, in a basic sense, can
be seen as the percentage of times a light will turn on when the switch is flipped.

Even with proper definitions, these topics can become confusing and the goals of
each specific energy attribute can be blurred. Resilience is different from availability
which is different from reliability. All definitions could also fit under the umbrella of
energy assurance. To aid to the confusion, most State Public Utility Commissions do not
distinguish between resilience and reliability when evaluating the economics of an energy
project (K. LaCommare, Larsen, & Eto, 2016). With additional attention to detail, these

definitions assist in the planning and evaluating energy related projects. These three

10
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definitions, with no one definition being more important than the other, lay the ground
work for communicating about power quality and provide metrics to measure then

improve and achieve.

2.3 Funding

All of the services in the DoD manage their installation energy programs
differently. The Air Force uses Head Quarters U.S. Air Force (HAF) to provide “policy,
guidance, oversight, and resources,” and it uses the Air Force Civil Engineer Center
(AFCEC) to “manage and facilitate the execution of energy programs” (Office of the
Assistant Secretary of Defense, 2016). These two offices work in tandem to meet the
three Air Force Energy Goals: Improve Resiliency, Optimize Demand, and Assure
Supply (Department of the Air Force, 2017). Some of the ways they meet these goals are
through the use of appropriated funds and utility privatization approved through Congress
(Department of Defense, 2004; The United States Congress, 2017).

Utility privatization is accomplished by setting up a contract with a private
company to operate and maintain a given utility. Utilities include the generation,
treatment, collection, transmission, or supply of electric power, water, wastewater, steam,
hot water, chilled water, natural gas or telecommunications (The United States Congress,
2017a). Defense Logistics Agency (DLA) is a governmental agency that provides
logistical support to the DoD and other government departments and agencies. DLA also
has an energy division that “provides petroleum products/lubes, alternative
fuel/renewable energy, aerospace energy, fuel quality/technical support, fuel card
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programs, and installation energy services” (Defense Logistics Agency, 2017). This
division assists the DoD with completing the privatization process on all of its service’s
installations. In DoD Instruction 4140.25, it states that DLA “assists the DoD
Components with global energy commodity infrastructure privatization and demand
management, including technical and contract support for the management of energy
commodities” (Department of Defense, 2015a). DLA through privatization has saved the
Air Force 511 million dollars in cost avoidance of infrastructure maintenance and
commodity purchasing through more efficient systems (Air Force Civil Engineer Center,
2017f). In a capitalistic economy the contractor wants to maximize profit and is
incentivized to reduce energy usage. Privatization is a useful tool because it places the
opportunity to succeed and risks on the contractor.

Energy Savings Performance Contract (ESPC) is a program where third-party
investing is incorporated to projects where energy can be saved or reduced. The Air
Force will continue paying at the normal, pre-ESPC, billing rate and any savings that is
generated will be used to pay the third party back for providing the capital for the
upgrades. These efforts are over seen by an Energy Service Company (ESCO) who is
charged providing the service to the Air Force while paying back the third party through
energy savings. If the project does not reduce energy the contractor will not be paid (Air
Force Civil Engineer Center, 2017b). ESPCs require basic metering and often use

advanced metering to validate the upgrades and success of the project (Marqusee,
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Schultz, & Robyn, 2017). Again, the contractor is given the opportunity to provide a
service and maximize profit like utility privatization.

The Energy Resilience and Conservation Investment Program (ERCIP) is a
portion of the Military Construction (MILCON) appropriation that is used to perform
major construction efforts in the DoD (Air Force Civil Engineer Center, 2017¢c; Defense
Acquisition University, 2017). In the Air Force, the 3300 MILCON appropriations are
received from the US Congress for execution through the annual National Defense
Authorization Act (Defense Acquisition University, 2017). According to the Energy
Portfolio Integration Manager of the Air Force, the Air Force receives 40-50 million
dollars annually for ERCIP related construction (Ramos, 2017). These projects are
funded to produce or reduce energy usage in all its forms (Air Force Civil Engineer
Center, 2017c). The Air Force can also receive money directly from the MILCON
program for energy related projects, but that is unlikely because of the creation of the
ERCIP subset (Ramos, 2017).

Air Force and the DoD also use power purchase agreements (PPA) and enhanced
use leases (EULSs) to provide power to their installations. These programs leverage real
property and private contractors to create an advantageous situation for both parties
involved. PPA are set up with contractors to provide renewable energy specifically for
use on a DoD installation (Office of the Assistant Secretary of Defense for Energy
Installations and Environment, 2017). EULs are agreements that provide a lease on land

owned by the DoD to contractors for the purpose of energy production or reduction
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(Office of the Assistant Secretary of Defense for Energy Installations and Environment,
2017). PPA and EUL are very reliant on good contracting practices and require just as
much, if not more, involvement than any other project performed by the Air Force.

The final way the Air Force updates and modernizes their infrastructure through
the appropriations for Facilities Sustainment, Restoration and Modernization (FSRM)
under the 3400 Operations and Maintenance (O&M) appropriation made available to the
DoD through the U.S. Congress (Defense Acquisition University, 2017). This money is
designated “for means the alteration or replacement of facilities solely to implement new
or higher standards, to accommodate new functions, or to replace building components”
including “utility plants [and] distribution systems” (Department of Defense, 2004).
These funds are used to sustain the operations of the military and their funding level is
usually given to the Air Force as a function or fraction of their current assets (Department
of Defense, 2015b). The assets must then be prioritized so that money can be dispersed

in a systematic way. This system is called asset management.

2.4 Asset Management

In Executive Order 13327, the term asset management is coined as the “efficient
and economical use of America’s real property assets” (Bush, 2004). Many times for the
DoD that means attempting to manage assets—facilities and equipment—that were
constructed or installed around World War II (Department of Defense, 2015b). The
condition and importance of the many different and complex infrastructure items have
driven the need for a focused approach to maintenance and modernization. This
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approach entails focusing investments and manpower in a systematic way to prevent
mission failure—an approach known as asset management. One of these systematic
methods is applying a Mission Dependency Index (MDI) to aid in prioritizing facility
funding in the Air Force. Grussing et al. explains MDI as “the relative importance of an
infrastructure asset (facility) in terms of its mission criticality” (Grussing et al., 2010).
Standard MDIs are created for all facilities enterprise wide and deviations from the
standard are reviewed at AFCEC (Mills et al., 2017). The standard list of MDIs are For
Official Use Only and will not appear in this thesis, however a breakdown of MDI can be

seen in Table 1.

Table 1. MDI Breakdowns (Mills et al., 2017)

Tier Criteria Recommended MDI
1 Mission critical 85 to 99
2 | Direct mission support 70 to 84
3 Base support 60 to 69
4 Community support below 60

An issue with the standard MDI is that it does not account for connected systems
like utilities, also known as “network facilities,” that service multiple facilities
(Department of the Air Force, 2016a). Rather, standard MDIs are set for each piece of
infrastructure individually. A study conducted by the Research and Development
(RAND) Corporation by Mills et al. contends that while these MDIs are useful they
should not be blindly trusted. Mills et al. claim that additional work needs to be done to
“reveal and clarify critical linkages™ that exist on Air Force installations (Mills et al.,

2017). The issue arises because MDIs are used directly in the prioritization of FSRM
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projects. The MDI of a facility accounts for 60 percent of the Consequence of Failure
(CoF) metric (Mills et al., 2017). Without the “critical linkages,” projects and
infrastructure could be misrepresented and their true impact misunderstood.

The other aspect of asset management is doing predictive maintenance or
condition based maintenance where equipment and facilities are not repaired or
maintained unless the health of the equipment or facility indicates it is warranted
(Software Engineering Institute, 2011). This leaves room for interpretation and
flexibility in maintaining infrastructure. Mills et al. report that infrastructure that is
degraded will require more repair funds as time goes by and they are more susceptible to
outages and catastrophic failures (Mills et al., 2017). Specific to electrical distribution
systems, Bahmanyar et al. recommend that investments in the distribution lines and
preventative maintenance, such as increased tree trimming, are required in order to
improve performance (A Bahmanyar, Jamali, Estebsari, & Bompard, 2017). To quantify
and standardize the condition of assets across all military services, a probability of failure
(PoF) metric was developed through the use of a Sustainment Management System
(SMS) (Mills et al., 2017; Under Secretary of Defense for Acquisition Technology and
Logistics, 2013). The SMS is a computer based program for evaluating the condition of a
facility or a piece of equipment. This PoF value is a vital component to the prioritization
of projects in the Air Force (Mills et al., 2017).

CoF and PoF account for 200 out of 210 points of the scoring metric which

decides the fate of which projects will receive funds from Congress. The final 10 points,
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approximately five percent of the total points, are awarded to a project based off of the
savings to investment ratio (SIR). The SIR is a calculation of the total discounted
operational savings divided by the total investment for the project (Air Force Civil
Engineer Center, 2017c; Mills et al., 2017). This value is found by using the Building
Life Cycle Cost (BLCC) tool developed by the Department of Energy following the
Federal Life Cycle Cost Methodology and Procedures found in Title 10 of the Code of
Federal Regulations (Air Force Civil Engineer Center, 2017¢). While seemingly small,
the SIR points could mean the difference in getting funded or not when prioritized against
all the projects throughout the Air Force.

The CoF and PoF are even more specific for “Utilities” projects. Utilities are
defined as “a facility or system composed of one or more pieces of equipment connected
to or part of a structure and designed to produce, transmit, or distribute a service such as
heat, electricity, water, or sewage disposal” (Department of the Air Force, 2016a). The
PoF of electrical utilities is calculated using the remaining useful life and direct condition
rating (found using visual inspection) (Air Force Civil Engineer Center, 2017¢). For
other utilities, including water and steam infrastructure, PoF is also calculated using the
total number of outages experienced. AFCEC’s Electrical Sub-Activity Management
Plan Program Manager stated that electrical outages are not considered in the PoF metric
because if an outage occurs it is usually because equipment fails and that equipment is
directly replaced (Benson, 2017). Equipment could be a large part for systemic failures,

but the issues may not be solved with a simple swap of equipment. In fact, Krajnak states
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that the collection of electrical fault information can help identify “problem areas” for
future modernization (Krajnak, 2000). Advanced meter data could be used to find these
systemic issues and historical patterns.
2.4.1 Critical Review of Facilities Sustainment, Restoration and Modernization

A review was performed on the FY17 and 18 Integrated Priority Lists (IPLs).
The IPLs were analyzed for utility projects and how electric projects compare to other
utilities that use outages as a measure of prioritization. The FY18 IPL contained 4,950
projects or other funding line items. The Air Force announced 3,376 projects or line
items, worth approximately 2.1 billion dollars, for funding on its Construction Task
Order. The IPL does not designate what type of project it is because some projects are
complex. However, the IPL does break down by the recommended Activity Management
Plan (AMP). AMP categories in the FY18 IPL included: Utilities, Facilities,
Transportation, Natural Infrastructure and Real Estate. Electrical projects are a part of
the Utilities AMP, which contains 358 projects. Other types of projects in the Utilities
AMP included: Water, Wastewater, HVAC, and Natural Gas. To locate electrical
projects in the IPL a word search of the project title and project description was
conducted within the Utilities AMP projects. The first word used was “electric,” from
there additional words were used to locate electrical projects. These additional words
included: switch gear, substation, low volt, high volt, volt, cables, transformer, generator,
distribution, power, light, energy, circuit, and feeder. The Utilities AMP projects were

again reviewed line by line to locate missing electrical projects. If project included

18

www.manaraa.com



multiple utilities, then the project would still be designated as an electrical project. This
process was repeated for the FY'17 IPL to increase the sample size.

The Facilities Sustainment, Restoration and Modernization (FSRM) budget is
executed by using an IPL to prioritize projects for future funding. As described in the
previous section, electrical projects in the FSRM program do not use outage information
to influence funding through the probability of failure (PoF) metric. This review was
conducted by comparing characteristic between Utilities Activity Management Plan

projects. Figure 3 gives the breakdown of the relevant data comparisons.

. Cost per Mean MAJCOM Medain MAJCOM Mean Prob of Median Prob
#of proj InCTO Below CTO

Project Priority Priority Failure of Failure
Non-Electrical 408 39% 61% $946K 137 107 85 100
. 155
Electrical 30% 70% $1,070K 193 204 75 80
(28% total)
a Non-Electrical 341 67% 33% $1,426K 83 72 97 100
g 111
« Electrical 68% 32% $1,519K 94 70 92 100

(25% total)

Figure 3. Review Outputs of Integrated Priority List

The 2017 and 2018 ILPs showed similar trends points to issues that could be
occurring in FSRM program. In 2017, a higher percentage of non-electrical projects
were in the Construction Task Order (CTO) for funding. For 2018, all utilities projects
were in the CTO close to or at the same rate. For both 2017 and 2018, electrical projects
were more expensive, received a worse priority, and rated lower for the PoF metric. It is
unclear if outage information could have changed the PoF. Both electrical and non-
electrical utilities projects have the same potential to score 100 on the PoF. It is very

possible that non-electrical utilities actually do have a worse condition overall in the Air
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Force. This comparison does not prove statistical difference, but simply shows the
apparent gap between electrical and non-electrical utility projects. This review is not
rigorous analysis, but analysis should be completed on this topic to see if this issue is

systemic or what is the true cause for this discrepancy.

2.5 Electrical Meters

As required by 10 U.S.C. §2924, 10 U.S.C. §2911 and 42 U.S.C. §8258, the DoD
is required to report energy usage, energy management activities, and energy reduction to
Congress (Office of the Assistant Secretary of Defense for Energy Installations and
Environment, 2017). The military has begun the implementation of Advanced Metering
Infrastructure (AMI) to better collect this data for Congress. According to the Software
Engineering Institute, AMI are, “Systems that measure, collect, and analyze energy usage
from advanced devices such as electricity meters, gas meters, and/or water meters,
through various communication media on request or on a predefined schedule” (Software
Engineering Institute, 2011). The term “advanced meter” is commonly interchanged with
the term “smart meter.” In fact, Congress uses the terms interchangeably in the Energy
Policy Act of 2005 (The United States Congress, 2005). Liu et al. state that advanced
meters are only used by producers and consumers. They state that producers are
interested in usage habits to best serve their customers while making the most money and
consumers just want to know how to save money (Liu, Golab, Golab, Ilyas, & Jin, 2016).

The DoD appears to fit into both the producer and consumer roles, making advanced
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metering a conceivable program. The Air Force’s AMI program is called the Advanced
Meter Reading System (AMRS).

The AMRS collects energy usage data every 15 minutes on specific single
facilities or single transformers if a facility has more than one transformer (Air Force
Civil Engineer Center, 2017a; Carnley, 2017; Department of the Air Force, 2017a). The
specific data stored includes but is not limited to, “power factor, peak power, total
consumption over time, and energy use” (Department of the Air Force, 2017a). The
meters specified in the Air Force Meter Data Management Plan (MDMP) have the ability
to store and communicate other energy data as well—including highlighting outages as
seen later in this section. The AMRS is forecasted to save over 20 million dollars in
energy costs a year once in place (Department of the Air Force, 2017a). By applying the
MDMP and other guidance from AFCEC, the Air Force is on track for meeting the
congressional mandates for advanced metering.

Electrical metering of “all Federal buildings” is required by the National Energy
Conservation Policy Act. This law required basic metering to be accomplished by the
end of FY12 (The United States Congress, 2005). The DoD met Congresses’ meter
requirement and then DoD took facility metering even further by requiring advanced
meters deployment by the services. On April 16, 2013, the then Acting Deputy Under
Secretary of Defense for Installations and Environment, John Conger, signed an energy
meter policy memorandum for all services. The policy expands the Advanced Meter

deployment to 60 percent of all electricity usage by the end of Fiscal Year 2020
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(Department of Defense, 2013). The progress of each services’ advanced meter
deployment is tracked in the Annual Energy Management and Resilience Report
(AEMRR), formerly known as the Annual Energy Management Report (AEMR) prior to
2017, to Congress (Air Force Civil Engineer Center Public Affairs, 2017; Office of the
Assistant Secretary of Defense for Energy Installations and Environment, 2016b). The
Air Force captured eight percent of the total energy usage at the end of FY 16 and hope to
have 27 percent captured by the end of FY17 through the AMRS (Air Force Civil
Engineer Center, 2017a). This retrofitting of existing infrastructure will culminate at the
end of FY20 by deploying advanced meters on 42 bases (Office of the Assistant
Secretary of Defense for Energy Installations and Environment, 2016b).

Advanced meters are also required on all newly constructed facilities and repair
projects (MILCON, ERCIP, ESPC and FSRM projects) with few exceptions. Those
meters must communicate with that services’ meter program, making them advanced
meters (Department of Defense, 2014). The DoD directs services to use five percent of
annual energy usage as a cost saving factor to identify cost effective advanced meter
placement; if the meter is not cost effective, it will not be required (Department of
Defense, 2013). If meters are not cost effective, then the program is missing a major
motivation for installing AMI which is reducing facility expenditures.

The DoD’s estimate of five percent cost savings is very conservative and could be
restricting the full potential of the AMI. AFCEC reports that up to five percent savings

can be realized by simply increasing the occupant’s awareness with mock energy bills.
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AFCEC even reports savings of 15 to 45 percent by continuously commissioning and
evaluating facility energy (Air Force Civil Engineer Center, 2017a). The U.S. Army
even reported a cost savings of 60 percent in a single facility because of the identification
of simultaneous heating and cooling in a facility (Parker et al., 2015). The DoD’s
Environmental Security Technology Certification Program (ESTCP) commissioned a
report that found energy efficient projects resulting in 14 percent energy reduction could
be identified by using hourly data from advanced meters alone. This was proven using
5.5 million square feet of DoD buildings (Shah, 2014). The Department of Energy also
reported 3 other projects that reported anywhere from 10 to 20 percent energy reduction
through the use of advanced metering (Parker et al., 2015).

Advanced meters are not always seen in the best light. One issue is the cost to
install, maintain and operate the advanced meters and the AMRS. The AFCEC AMRS
Chief Program Officer reported that individual meter installations could cost anywhere
from 12.5 thousand dollars to 50 thousand dollars (Carnley, 2017). Additional funds
must be used to operated and maintain these systems to keep them current and functional.
Operations and maintenance costs of these advanced meters are estimated at 300 dollars
per year, but the true value will become more apparent and accurate as the AMRS
continues to be deployed in the military (Air Force Civil Engineer Center, 2017a). Data
storage is also a vital piece of operating the AMRS. Zhou et al. describe how data from
advanced meters can grow to overwhelming levels. They point out that one million

meters reporting at 15-minute intervals (the Air Force standard) in a single year will
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produce 2920 Terabytes of data (Zhou, Fu, & Yang, 2016). In the Air Force MDMP it
makes no mention to the plan for data storage, but does claim that in 2015 the Air Force
operated 13 thousand advanced meters, prior to the AMRS rollout (Department of the Air
Force, 2017a). At these levels, the Air Force would collect approximately 40 Terabytes
every year. This amount of data requires special systems to handle and store the data.
Not all of the 13 thousand meters can be converted for use on the AMRS and it is unclear
how many will be converted. However, the amount of data will continue to grow from
these advanced meters as they are installed at the 42 bases chosen for the AMRS initial
roll out and as facilities are constructed and repaired across the Air Force.

Another possible issue is the failure rate of the advanced meters. A study of PV
solar implementation showed that the electrical meter was the cause of one percent of all
PV failures. The study had 350 individual PV systems with over 3500 failures in a 27-
month period (Formica & Pecht, 2017; Golnas, 2012). Unlike PV failures, broken
advanced meters will not cause a facility to lose access to power. Broken meters that do
not communicate with the AMRS only cause holes in the energy usage data. However,
holes in the data are nontrivial. An ESTCP project recommended the DoD to implement
better procedures to eliminate these holes because they greatly affect the usefulness of
meter data while completing an energy audit (Shah, 2014). A broken meter could also
mask an outage event or other power quality issues. The Pecan Street Data Director
claims that approximately only one percent of the NULLSs or zeros in their 1,300-home

dataset of minute by minute data can be attributed to a utility wide outage. The other 99
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percent of the NULLSs or zeros could be a mixture of small distribution sized outages,
transformer failures, meters being unplugged, and broken meters (Fisher, 2017). Similar
to the operations and maintenance, actual failure rates will be understood as more and
more meters are installed.

Other issues not examined in this thesis include worries of invasion of privacy
surrounding advanced meters. Fortunately, these privacy issues do not exist in the
military as transparency and proper stewardship is demanded of the government. Rather
cyber security is arguably the largest issue surrounding AMI deployment (Air Force Civil
Engineer Center, 2017a). The DoD requires the military services to implement AMI
without compromising the DoD network or leaking power usage information for sensitive
missions—a task that is difficult to define and continues to change day by day
(Department of Defense, 2013).

Even with of the above named issues, advanced meters have the ability to report
more than just energy usage, making them a force multiplier. Air Force Pamphlet 32-
10144, Implementing Utilities at U.S. Air Force Installations, highlights the fact the
“energy data systems” should be used to generated cost savings by identifying equipment
to replace (Department of the Air Force, 2016b). This idea may be applied to facilities
and infrastructure as well, if correctly used. Advanced meters also have the possibility of
be used to understand the absence of energy. Lawton et al. emphasized the importance of
knowing exactly when and for how long outages occurred as they would affect the

economic and monetary impact of the loss of power (Lawton, Sullivan, Liere, & Katz,
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2003). “Last Gasp” messages are used by most AMIs to communicate real time electrical
outage occurrences. It is called Last Gasp because meters—and their accompanying
communication systems—are powered by the same electricity that it is measuring and
when the power goes down, the meter has to send the Last Gasp message prior to losing
power (National Electrical Manufacturers Association, 2017). Tram explicitly states that
commercial power companies rely on these Last Gasp messages to improve their power
quality and reduce operations cost associated with outages (Tram, 2008). The U.S.
Department of Energy created a design guide for these Last Gasp messages, in which
they explain that communication becomes backlogged and unusable when a large number
of meters are all sending their Last Gasp messages at the same time during a massive
outage event (The Department of Energy Office of Electricity Delivery and Energy
Reliability, 2010). The exact source of the failure will still be found while manually
troubleshooting the fault and bring the power back on. This does not mean the limited
data collected during the communication backlog is useless, but rather could still have a
story to tell. By collecting Last Gasp messages, information on when and how long these
outages are occurring can be archived and analyzed to identify problem areas of the base
grid.

In some cases, Last Gasp messages are not used for electrical meters. If that is the
case, it makes locating outages harder because there is no clear indication that electricity
is not flowing when looking at the dataset. One strategy could be looking at a dataset for

areas of zero reported energy usage. This is not completely accurate because the zeros in
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the dataset could also be from other malfunctions in the energy meter, as described above
in this section (Fisher, 2017). If the assumption was made that something went wrong
with the meter or facility, including the possibility of an outage, then one could begin to
analyze the data. Any electrical consumer, residential or commercial, will see a constant
leak of electrical energy due to modern-day electronics. In a report created by the
Lawrence Berkeley National Laboratory for the California Energy Commission, Meier et
al. show that in some cases 13 percent of all energy usage is due to this constant leak
caused by electronics in “low power” or “sleep” modes that are constantly draining as
long as they are plugged into a wall (Meier et al., 2008). Anything plugged into a
convenience receptacle, or wall plug, that is either turned on or off has the potential to
draw some small amperage. That small amperage can be measured and stored any
energy meters, thus showing periods of time with low energy usage. Because of this, it is
assumed that an outage or malfunction occurs when there is a zero in an energy usage
dataset for occupied buildings.

Past outages or malfunctions can be identified if Last Gasp message are not used
by looking at historical data if the following conditions apply:

(1) the meters have an auxiliary power source to enable communications and

measurement in the absence of power or the dataset stores NULL or zero values

when disconnected from the energy meter,

(2) the meters are correctly communicating energy usages over their prescribed

intervals, and
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(3) broken or inoperable meters are clearly identified in the dataset.
The Unified Facilities Guide Specifications (UFGS) are followed and used in all military
projects to define what exactly is required when facilities are constructed or repaired.
UFGS 26 27 13.10 30, Electric Meters, defines 15 minutes to be the standard interval
with which the energy usage is to be reported on advanced electrical meters (Air Force
Civil Engineer Center, 2017d). The Department of Energy also recommends a 15-minute
interval for “energy system diagnostics” but also states “shorter intervals for end use
diagnostics” and “as frequent as required” to enable some flexibility in implementation
(Parker et al., 2015). It is unclear if a 15-minute data interval is too long or too short to

be effective at pinpointing outages if the above three conditions exist.

2.6 Electrical Outages

As required by 10 U.S.C. §2925, the DoD is required to report utility outages
(electricity, water or gas) lasting longer that eight hours to Congress (The United States
Congress, 2017b). As reported in the previous five AEMRs, the DoD experienced
multiple utility outages as seen in Figure 4 (Office of the Assistant Secretary of Defense
for Energy Installations and Environment, 2014, 2015, 2016b, 2017). The interesting
spike in FY16 was attributed to including, for the first time, outages that were mitigated
by backup systems or generators. (The United States Congress, 2017b). These outages
cost the DoD upwards of half a million dollars per 24-hour period due to fuel costs or
downed operations (Office of the Assistant Secretary of Defense for Energy Installations
and Environment, 2017). The data obviously does not capture everything; specifically
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not reporting any outages less than eight hours. In a report commissioned by the Pew
Charitable Trusts, Marqusee et al. emphasis the importance of understanding the real
outages that are occurring on military bases. They highlight the limited outage
information in the AEMR, but also looked at reliability metrics of the utility providers for
the 30 largest military installations and maintenance logs from the Navy. They make the
claim that there are many outages that are not being captured by the current business
rules and that reliability and availability on military installations could be and is worse

than reported (Marqusee et al., 2017).

Number of DoD Outages Lasting Longer
than 8 hours by Year

700
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300
200
,
FY12 FY13 FY14 FY15 FY16

Figure 4. Number of DoD Outages Lasting Longer than 8 hours by Year

Current outage detection in the academic and private sectors is accomplished by
using many different advanced technology and techniques. In a review of fault detection
techniques, the definition of a fault is given as “an unpermitted deviation from its

standard operating conditions” (Gururajapathy, Mokhlis, & Illias, 2017). These “faults”
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create outages and disrupt the flow of electricity to the end user. Jamali and Bahmanyar
investigated previous fault/outage identification processes. They claim the majority of
processes rely on measuring current at multiple locations in a grid. Their processes use
voltage measurements at sectionalizers, re-closers and at other electric distribution
infrastructure (S. Jamali & Bahmanyar, 2016). Using specially configured advanced
meters is vital to their processes. Menchafou et al. theoretically showed that outage
physical location could be found using voltage sag by measuring voltage and amperage at
substations (Menchafou, Youssef; Markhi, Hassan; Zahri, Mustapha; Habibi, 2015). This
measuring would be done by advanced meters. Bahmanyar et al. show a way to
autonomously locate and restore power to “healthy” sections of a distribution network.
Their processes require “voltage and current measurements at the head of main feeder
and the magnitude of voltage sags recorded at some nodes equipped with voltage
measurements, such as power quality meters or digital fault recorders” (Alireza
Bahmanyar et al., 2016). Power quality meters meet the requirement described by
AFCEC’s Class I Meters (Air Force Civil Engineer Center, 2017a; Department of the Air
Force, 2017a). In another paper, Jamali, Bahmanyar and Bompard, developed an
algorithm for finding fault locations using only a limited number of advanced meters
located at substations and a few additional points in the distribution. Their algorithm
requires near real-time measurement, something AMRS has the ability to do but is not

mandated (Sadegh Jamali, Bahmanyar, & Bompard, 2017).
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Outage recording at the Air Force level is improving and exceeding the eight hour
outage reportable limit, but is not on par with the academic and private sectors. AFCEC
has begun to use a reporting system to make outage reporting easier and more accurate.
The system is called the Utility System Outage Reporting and Tracking (USORT) Tool
(Watley, 2017). The tool will allow operators and engineers to report utility outages and
categorize them for improved analysis efforts. As described by Chen et al. outage
detection and management is accomplished by many different sources of data (Chen,
Dokic, & Kezunovic, 2014). Solely relying on advanced meter data will not tell the
whole picture, but the addition of USORT tool is a step in the right direction.

Ernest Orlando Lawrence Berkeley National Laboratory, under a U.S. Department
of Energy contract, investigated the monetary effects of outages on commercial and
residential facilities. This economic investigation into energy reliability concluded that an
outage could cost upwards of 80 thousand dollars per hour, or two million dollars for 24
hours, for large commercial businesses (Lawton et al., 2003). Compared to the daily rate
of the DoD of 500 thousand dollars, this drastic difference may imply that the
government is undervaluing their operations. Lawton et al. developed their numbers
from 24 datasets from the 1990s and early 2000s, thus under reporting the economic
impact in the current value of the dollar. Sullivan and Kean point out the dichotomy
between customers that want cheap electricity without regard to the quality of power
verses customers who put a on power quality and are willing to pay for the increased

reliability (Sullivan & Keane, 1995). The DoD wants and is willing to pay for the
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increased reliability. Outages can be avoided and reliability increased with better asset
management of electrical infrastructure; over 40 percent of outages are caused by
equipment failure in the DoD (Office of the Assistant Secretary of Defense for Energy
Installations and Environment, 2017). Paying this “premium” will avoid the high cost of
operating without power.

The Institute of Electrical and Electrical Engineers (IEEE) defines standards for
electrical distribution systems in the U.S. through Standard 1366, IEEE Guide for
Electric Power Distribution Reliability Indices. These standards of electricity reliability
for private utility companies were defined and explained further in a report also
completed by LaCommare and Eto of the Lawrence Berkeley National Laboratory. They
define three important metrics; Momentary Average Interruption Frequency Index
(MAIFI), System Average Interruption Duration Index (SAIDI) and System Average
Interruption Frequency Index (SAIFI). MAIFI is a measurement of interruptions lasting
less than five minutes in duration (K. H. LaCommare & Eto, 2004). These momentary
“blips” in the system can have far reaching and serious effects; Ms. Ballentine
emphasizing this issue through a story about the energy dependence Unmanned Aerial
Vehicle operations in her address to the Pew Charitable Trusts (Pew Charitable Trusts,
2017). SAIDI is a measure of the average amount of downtime that each customer will
experience in a given year as seen in Equation 1.

Sum of customer (sustained) interruption
durations for all customers

SAIDI =
Total number of customers served
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Equation 1. System Average Interruption Duration Index (K. H. LaCommare & Eto,

2004)

SAIFT is similar to SAIDI but instead counts the frequency of times that there is
an interruption in power supply as seen in Equation 2. MAIFI is an event less than five
minutes and SAIFI is everything longer than five minutes.

Total number of customer (sustained)
interruptions for all customers

SAIFI =
Total number of customers served

Equation 2. System Average Interruption Frequency Index (K. H. LaCommare & Eto,

2004)

These interruptions are defined as, “The total loss of electric power on one or
more normally energized conductors service” and does not include “power quality issues
such as: sags, swells, impulses, or harmonics” (Institute of Electrical and Electronic
Engineers, 2012). Collection of these metrics are regulated by state Public Utility
Commissions (PUC). In 1998 Warren et al. performed a survey of private utilities to
investigate the usage of IEEE’s standards for distribution reliability and how they are
being implemented. This study found that standards were not being followed. Many
inconsistencies made the metrics useless for comparisons across the nation and additional
guidance was required from the IEEE (Warren, Pearson, & Sheehan, 2003). The IEEE
did and continues to update Standard 1366 for those reasons, but PUCs are responsible
for enforcing the IEEE standards. Eto and LaCommare tracked PUCs to see how these

state commissions were using the reliability data. They reported in 2008 that 35 of the 51
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(50 states and Washington D.C.) vPUCs required routine/annual reliability reports using
SAIDI and SAIFI which was improvement from 10 PUCs in 2004. Additionally only
two PUCs and 12 of the 123 used the MAIFI metric for momentary interruptions (Eto &
Lacommare, 2008). In 2016 LaCommare et al. continue to report that there are
inconsistencies with reporting but that the addition of the Department of Energy’s Energy
Information Administration and their Form 861 has greatly improved these
inconsistencies (K. LaCommare et al., 2016).

The Pew Charitable Trusts evaluated the private utility’s energy reliability of the
30 largest military bases between 2013 and 2014 using SAIFI and SAIDI metrics. This
investigation showed that on average, each of the 30 bases experienced one major power
outage lasting seven hours. While SAIFI and SAIDI do not describe the exact time of
day or part of the year these outages occur, they do help leaders understand the
vulnerabilities that are realities on military installations.

One solution offered back in 2000 by Krajnak showed the usefulness of faulted
circuit indicators (FCIs). He states the FCIs reduce the time that repair crews spend
locating the cause of an outage (Krajnak, 2000). The function that FCIs perform can be
performed by advanced meters. This research of FCIs and their placement continues 17
years later with Li et al. showing that the placement of these meters can be optimized to
pinpoint locations of outage causing faults (Li, Chen, & Guo, 2017). This research does
not comment on the physical location of the outages, but rather the process of identifying

their duration and time in historical datasets. Krajnak also states that the FCIs can help
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identify “problem areas” for future modernization (Krajnak, 2000). Identification of
problem areas is something the DoD could use to influence the funding of infrastructure
modernization projects.

Whether reporting outages using the current DoD business rules or the IEEE
Standard, the main issue continues to be accurately determining, reporting, and collecting
the correct data. The DoD could adopt the refined procedures used by the Department of
Energy to better report energy quality. The true number of outages, at any duration and
not just those over eight hours, is obviously some number larger than that which is
indicted to Congress. The impact of these shorter outages will not be understood without
a mandate or directive to collect this information. Using advanced meters could automate
this reporting and decrease the uncertainty surrounding the true status of the DoD’s

energy usage.

2.7 Upgrade Infrastructure

In a study commissioned by the Assistant Secretary of Defense for Installation
Energy, the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) created
a Matlab based tool to analyze the electrical reliability of a military installation in order
to “develop the business case framework to support budget and alternative financing
decisions” (N Judson et al., 2016). Their technical report investigated the way the
military currently manages installation energy at four different bases on each of the four
military service components. A finding in the report, which was reiterated in an
interview with the author, pointed to the fact that the military does not keep the correct
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reliability metrics data to fully implement their developed tool. The recommendations to
rectify these issues included:

1. Collect Data on actual electrical, heating and cooling loads for critical

missions and how those loads vary throughout the day, week and year

2. Track performance data (hours run, failure rates, and maintenance logs) for

energy generation in a central electronic database

3. Track existing electrical distribution system outages in a systematic way (N

Judson et al., 2016; Nick Judson & Pina, 2017).

This data is not only important to the MITLL reliability tool but also to designing
and operating Net-Zero Buildings and Microgrids (Booth, Barnett, Burman, Hambrick, &
Westby, 2010; CH2MHILL & Clark-Nexsen, 2016).

According to Ersoz and Colak, using deterministic methods for evaluating the
optimum Combine Cooling, Heating and Power (CCHP) implementation is difficult and
ineffective due to the number of unknowns and high number of uncertainties (Ersoz &
Colak, 2016). CCHP is a high efficiency system where electrical power and cooling is
produced and the waste heat is re-used. Ersoz and Colak show that deterministic
methods that rely on definite information fail because parameters change or are unknown.
Applying probabilities with sensitivity analysis creates a better understanding of the risks
involved for the decision maker in this complex investment (Ersoz & Colak, 2016).

Applying this approach of stochastic decision making to any type of infrastructure
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upgrade can prove to be invaluable in current Air Force funding models. Meter data can
provide the basis for the application of these stochastic models.
2.7.1 Net Zero Buildings

Brost researched the implementation of Net-Zero Buildings (buildings that
produce as much power and/or water that they use) on Air Force installations. In
commenting on the current application of advanced meters in Net-Zero Buildings, Brost
stated, “As Smart Grid technologies increase, Advanced meters will be incorporated
which allow for more efficient management of the grid” (Brost, 2013). Fort Carson is
one of the Army’s premier locations for their Net-Zero Installation initiative. In Fort
Carson’s Final Environmental Assessment, the Army stresses the need for having energy
meters to properly assess their energy usage, including electrical energy. A follow-on
objective is to implement a microgrid on the installation for the purpose of “energy
surety” (Department of the Army, 2012).

A technical report written by the National Renewable Energy Laboratory (NREL)
highlights the usefulness of advanced meters in modernizing electrical infrastructure
through Net Zero energy application on military installations. It states the recommended
approach to sizing and completing a successful electrical design is to collect hourly load
data at the facility or substation level. Additionally, the report recommends that five
years of data be kept for all important facilities (Booth et al., 2010). This data can be

collected and stored through the Air Force’s AMI and AMRS.
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2.7.2 Microgrids

The Department of Energy defines a microgrid as “a local energy grid with
control capability, which means it can disconnect from the traditional grid and operate
autonomously” (Department of Energy, 2014). Similarly, the Energy Independence and
Security Act in 2007 defines a microgrid as “an integrated energy system consisting of
interconnected loads and distributed energy resources (including generators and energy
storage devices), which as an integrated system can operate in parallel with the utility
grid or in an intentional islanding mode” (The United States Congress, 2007).

Microgrids appeared in three of 11 energy and sustainability presentations at the
2017 Society of American Military Engineers’ (SAME) Joint Engineer Training and
Conference (Society of American Military Engineers, 2017). The private industry has
proven microgrids work and their use is broad and very applicable to the military
(Department of Defense, 2015¢c; Morgan, Valentine, Blomberg, Limpaecher, & Dydek,
2016; Van Broekhoven, Judson, Nguyen, & Ross, 2012). In a study of Urban
Microgrids, MITLL highlights 11 facilities in New York City that were able to continue
operation during Superstorm Sandy due to their microgrids. They state, “Microgrids can
be leveraged to maintain normalcy during major catastrophes” (Morgan et al., 2016).
This normalcy is critical to military operations, especially during times of major
catastrophes and during sudden electrical grid failure.

The level of reliability available from microgrids fits in well with the DoD’s

Operational Energy Strategy Objective of “Enhancing current mission effectiveness”
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where the priority is given to initiatives that improve “robustness and flexibility of the
energy supply chain” (Office of the Assistant Secretary of Defense for Energy
Installations and Environment, 2016a). This same operation strategy is mirrored in the
DoD’s use of the Strategic Sustainability Performance Plan (SSPP) for the department’s
management of infrastructure. The SSPP guides fiscally minded DoD-wide decisions to
ensure the “continued availability of critical resources” including facility energy
(Department of Defense, 2016b). Inadvertently the DoD has pointed towards microgrids
as a possible solution in their strategic documents.

To help reduce the confusion and direct the excitement about microgrids, the
Naval Facilities Engineering Command (NAVFAC) developed the Microgrid Design and
Reference Guide (CH2ZMHILL & Clark-Nexsen, 2016). This document provides a guide
for Navy engineers to follow to implement and construct microgrids on their installations.
A key requirement in the design of a microgrid is identifying requirements and gathering
background information. Specifically highlighted in the guide is the use of advanced
meters data to understand the site electrical load including time-based full, peak, average
and minimized load (CH2MHILL & Clark-Nexsen, 2016). The IEEE Standard 1547 .4,
Guide for Design, Operation, and Integration of Distributed Resource Island Systems
with Electric Power Systems, agrees with the NAVFAC guide in the load considerations
section and the call for better energy usage data. It states that when sizing a distributed
resource island system, like a microgrid, having historical demand profiles are important

for times throughout the day, week or season (Institute of Electrical and Electronic
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Engineers, 2011). This data can be collected and stored through the use of advanced
meters.

The U.S. Department of Energy worked in tandem with many other nations in
Europe and Asia to help progress microgrid technology. Eight of the nine microgrid
projects in Japan between 2003 and 2013 have advanced meters (Ton & Smith, 2012)
MITLL completed a technical report for the DoD on the application of microgrids on
military installations. The report highlights the work of Naval Support Facility Dahlgren
by implementing a three phase approach to installing a microgrid; the first phase being
data collection with advanced meters (Van Broekhoven et al., 2012). With data from
advanced meters, a more informed decision can be made about what specific equipment
and facility upgrades can be cost effective and impactful.

Van Broekhoven et al. also point out that understating the existing infrastructure
is vital for successfully implementing a microgrid on a military installation. They state,
“In developing microgrid architectures, the DoD needs to be cognizant of the legacy
infrastructure on each installation” (Van Broekhoven et al., 2012). This understanding
and information could come from objective advanced meter data. As seen with Net-Zero
Buildings and Smart Grids, meters play a large role in defining the bounds of a successful
project or program (Booth et al., 2010; Software Engineering Institute, 2011).

2.7.3 Smart Grid
Smart grid application is another major electrical distribution modernization that

can be completed on an Air Force installation. A smart grid is a grid that uses “digital
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technology for communications, monitoring (e.g., sensing), computation, and control”
(Software Engineering Institute, 2011). European policy experts point to technologies to
reduce energy usage and smart grids were identified as one of the top five technologies
for accomplishing this reduction in energy usage (Obrecht & Denac, 2016). The
Department of Energy funded the Software Engineering Institute (SEI) to create guidance
on the creation of smart grids (Software Engineering Institute, 2011). The SEI state that
monitoring (e.g., sensing with advanced meters) is one of the four pillars of a smart grid.

Without monitoring there is no control or feedback to how the smart grid is performing.

2.8 Conclusion

The Air Force continues to maintain operations on its installations through the
funding of infrastructure projects to ensure uninterrupted ability to project military
power. Electrical outages are a huge concern of the U.S. Congress; they are looking for
anything that can be done to reduce them. Advanced meters are currently being deployed
around the Air Force and their effectiveness is only beginning to be realized. Their
ability to positively affect asset management decisions is a resource the Air Force has yet
to fully explore. The current cutting-edge electrical distribution upgrades require
advanced meters to be successful. After investigating these topics, advanced meters can
be seen as a vital tool to increase the resilience, availability and reliability of electrical

power to Air Force missions.
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II1. Methodology

3.1 Introduction

Existing datasets were collected and analyzed to best answer the research
questions proposed in Chapter 1. These datasets were obtained through private and
public organizations. The data obtained was energy meter data for homes in Austin,
Texas (referred to as the Pecan Street data) and facility energy usage on Ellsworth Air
Force Base (AFB) in South Dakota. Additionally, the Integrated Priority Lists (IPL), a
project priority spreadsheet, from Fiscal Years (FY) 17 and 18 were obtained from the
Air Force Civil Engineer Center (AFCEC). Data was cleaned and analyzed using R, R
Studio, and Matlab. Programing codes were created by the researcher and obtained from
the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). Computing was
done on the researcher’s personal computer and government machines. This chapter will

outline the methodology and research approach.

3.2 Data Resource

The two sources of energy usage data used in this analysis are from Pecan Street
and the U.S. Air Force. Pecan Street is a consortium from the University of Texas at
Austin which focuses on the reduction of energy and water usage. They claim that in
order to reduce energy and water usage, the information about how that energy is used is
critical. Pecan Street has over 1,300 volunteers that provide their residential energy
usage (Pecan Street, 2017). Data collection began in 2012 and has continued from that

point. Each volunteer has the ability to store up to 50 different recorder sources (for
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example refrigerator, microwave, receptacles, etc.) of energy usage down to minute by
minute time intervals. Total energy usage was evaluated in this thesis. This data was
analyzed for patterns of electrical outages and used for sensitivity analysis of different
data characteristics.

Other data was received from many resources around the Air Force. First, the
IPLs for FY 17 and FY 18 were obtained through discussions with AFCEC. The IPL is a
project priority listing of all of the FSRM projects (facility upgrades) required by the Air
Force (Mills et al., 2017; Ramos, 2017). The projects are ranked and funded according to
condition and significance, as described in Chapter 2. A greater understanding of how
electrical distribution projects have historically scored in relation to other facility
upgrades was obtained by reviewing the ILP. This review was placed in Section 2.4.1.

Ellsworth AFB in South Dakota has historical energy usage data of specific
buildings on their installation. This data was collected by electronic means with a one-
day interval. Accompanying the meter data was Geographic Information System (GIS)
data and real property data that describes the location and equipment characteristics. This

Air Force data was also evaluated against the Pecan Street data to validate its findings.

3.3 Data Collection and Validation

Data collection was accomplished through personal contact and through internet
file sharing. Meter data from Ellsworth AFB was collected through smart meters and
stored in an Excel spreadsheet format. GIS data was created by the Ellsworth Civil
Engineers and is readable with ArcGIS, the Air Force GIS standard software. This data
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was received through the use of the Aviation and Missile Research, Development, and
Engineering Center Safe Access File Exchange (AMRDEC SAFE) system. Additional
information and contacts were obtained via email. Detailed IPL spreadsheets were
received through the Air Force Civil Engineer Portal SharePoint after gaining access
from AFCEC personnel. Energy usage data from Pecan Street was received through the
“Dataport” on the Pecan Street website and a Secure File Transfer Protocol (SFTP) setup
directly with the University of Texas at Austin Database Manager through the computer
program FileZilla. Access was granted after proof was given that the researcher was a
student. Whether through email or online systems, existing raw datasets were collected
and then validated prior to analysis.

Techniques for evaluating the data followed past research. Olive used meter data
from Ellsworth and other Air Force bases to attempt to find correlations in building
characteristics and energy usage (Olive, 2017). Olive’s methodology of reading meter
data was applied to avoid errors while performing analysis of the data. In particular,
Olive’s strategy for avoiding errors when meters “roll over,” data collection interval
width manipulation, and removal of erroneous data was used (Olive, 2017). Roll over
errors occur if a meter has reached its limit of reportable integers and starts over counting
at zero. This only occurs if the meter is reporting cumulative energy usage. Minimal roll
over issues are expected with advanced meters, but could arise depending on the
manufacture specification. No roll over errors were experienced with Pecan Street data

because the dataset reports exact energy usage and not cumulative energy usage. Next,

44

www.manaraa.com



Olive manipulated data collection interval widths of Ellsworth AFB data from daily
intervals to monthly intervals by simply adding intervals together to reach the desired
length. Doing so she was able to compare the data with Tinker AFB which only had
monthly intervals (Olive, 2017). Finally, the removal of erroneous data was required
because advanced meters do eventually fail, as proved by Golnas (Golnas, 2012). Clean
data means that analysis of outages and sensitivity analysis can be trusted with more
certainty.

Pecan Street data was used and is applicable to the purposes of this thesis. Pecan
Street data is very valuable because of its extensive size, interconnected relationship and
extremely small data collection interval. The data’s applicability to the Air Force as a
whole may be questioned because the datasets are of residential energy usage. While it is
true that the usage, scale, and distribution are vastly different from industrial or military
energy usage, Pecan Street is a real-world, naturally-occurring dataset that can be
analyzed against itself. Additionally, power companies supply electricity to Air Force
bases and residential customers from the same power plants and similar distribution
networks. This means if an outage occurs on-base, depending on the system, off-base
customers can feel the same effects. For these reasons, residential data was extensively

used in this thesis.

3.4 Data Analysis Methods
The analysis of the data relies on the understanding of two key terms:
combination and interval (see Table 2 for their definition and examples). Sensitivity
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analysis was conducted by altering these two factors through the use of computer
simulations and not through data collection. The combination was varied by changing
the size of the groupings that were used to find the mean energy usage. The combination
of data was not organic or specified by the dataset, but rather it was user defined. The
data collection interval was varied by amassing the dataset together which was given in

one-minute intervals.

Table 2. Data Analysis Key Terms

Term Definition Example 1 Example 2

Combination |The grouping of energy usage Two weeks' worth |13 weeks' (or ~four
measured by a meter from the of energy usage months') worth of
same time period for a specified from 1300hr to energy usage from

number of weeks for the purpose  [1310hrs, with a 0830hrs to 900hrs,
of finding a mean energy usage for |mean energy usage [with a mean energy
the given period of 2.3 kWh usage of 7 kWh

Interval The width of time that a meter 1 minute intervals |15 minute intervals

collects energy usage data prior to |of energy usage of energy usage for
reporting to a data storage system  [for 01 Aug 2011 to |15 Oct 2013 to 01
31 Dec 2013 Jul 2015

Sensitivity analysis is, according to Saltelli et al., “The study of how uncertainty
in the output of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” (Saltelli et al., 2008). For this analysis the “model
inputs” were controlled by varying combination and interval. The output measured was
detection of outages with the associated errors. The effects of having smaller and larger
data collection intervals were evaluated against the 15-minute DoD standard for
advanced meters (Air Force Civil Engineer Center, 2017d). The data collection interval

was varied from one minute (the smallest interval available through Pecan Street) to 1440
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minutes (or 1 day/24 hours) and evaluated all 36 mathematical factors of 1440.
Alternatively, this concept can be thought of as varying the frequency of the data
collection from once a minute to once a day. This data was amassed, following Olive’s
procedures, using the one-minute interval dataset and adding subsequent intervals to
reach the desired interval width. This data was then analyzed for outages or malfunctions
in the meter—periods with no usage reported as a “0” in Pecan Street—and checked
against known outages or malfunctions. Each individual energy usage was measured
against its specific mean energy usage to define a standardized distance, or standard
deviation, from the mean.

The analysis of outages used specified combinations of data to find a mean energy
usage. These groupings were 1, 2, 4, 13, 26 and 52 weeks (or the mathematical factors of
52). For combination of 13 and 26 weeks, seasonal effects to energy usage can be seen.
To help explain this variance, these combinations begin on the 15" of April or a 3-month
multiple of the 15™ of April (e.i. 15™ of July, October, and January). Using the National
Oceanic and Atmospheric Association’s published 30-year mean outdoor air temperature,
the 15™ of April was chosen because it is the midpoint between January and July, the
coldest and hottest months, respectively (National Oceanic and Atmospheric Association,
2018). See Figure 5 for a visualization of the 30-year mean outdoor air temperature in

the United States.
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Figure 5. 30-Year Mean Outdoor Air Temperature (National Oceanic and Atmospheric

Association, 2018)

Outage detection was accomplished by using combinations of energy usage for a
specific time of year and specific time period in the day. Each individual member of the
combination was then measured against the mean energy usage for that combination to

create a standardized distance from the mean. The standardized distance for known
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outages/malfunctions were saved for each home in the dataset. This can be done only
when outages are known. Without knowing when the outages occur, one could simply
look for zeros in the dataset. However, relying solely on counting reports of zero energy
usage to detect outages is insufficient. This is because outages can happen within the
data collection interval, thus creating intervals with reduced energy usage. This concept
is illustrated in Figure 6. The “Smallest” interval is the most accurate and robust. The
“Small” interval is twice the size of the “Smallest” interval, and so on. It can be seen the
“Largest” interval shows no visible signs of an outage. By applying these statistics, the
outages may be calculated. The larger the distance from that specific time of year’s mean

energy usage, the more likely that an outage occurred.
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Example Outage vs Four Intervals
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Figure 6. Example Outage vs Four Intervals

Outages and malfunctions were assumed to be any reported energy usage of less
than or equal to zero. It is key to note that no verified outage information was obtained
and the existence of the outage was assumed. Outages and malfunctions lasting longer
than one minute were found by counting the zero and negative values in the one minute
by one minute raw dataset. By using a dataset with these “known” outages and
pinpointing their location, an ideal distance from the mean can be estimated by increasing
the interval the data to mask those zeros/outages. This ideal distance, defined in the rest
of this thesis as the ideal critical value, is found by sorting data as seen in Figure 7. First,

critical values are determined for each individual Data ID. Then, the ideal critical value
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is chosen from the 88 critical values for each combination and interval. Once the ideal
critical values are determined, they can then be tested on a virgin dataset to evaluate its
effectiveness at identifying outages. Additionally, the number of weeks used in the
combination to find the mean energy usage was also varied to ascertain the effects of

grouping the energy usage differently.
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Figure 7. Infographic of How the Ideal Critical Value is Determined

This Data Analysis is concentrated on confirming the hypothesis provided below

for each data collection interval:
H, = No outage or malfunction occurred during the measured interval

Ha. = An outage or malfunction occurred during the measured interval
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If the standardized distance from the mean is below the ideal critical value, as
defined above, then the null hypothesis is rejected in favor of the alternative. Therefore,
this hypothesis is used to improve the effectiveness outage detection.

Inherently, by using hypothesis testing, there arises the opportunity for errors. A
Type I Error occur when the null hypothesis is rejected in favor of the alternative
hypothesis when the null hypothesis was correct all along. Conversely, Type II Error
occurs when the null hypothesis is accepted as truth, when really it should have been
rejected in favor of the alternative hypothesis. For this analysis a Type I Error, known as
a False Positive, is where the model states there was an outage when really there wasn’t
one. A Type Il Error, known as a False Negative, is where the model states that no
outage has occurred when really there was one. Figure 8 gives a visual breakdown of

each situation possible for the hypothesis testing.
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Figure 8. Error Definitions
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When measuring outage detection error, there is a distinction between an
“identified” and “known” outage. Identified outages are those intervals whose
standardized distances, or standard deviations, from the mean energy usage are less than
that of the ideal critical value. Identified outages contain all Type I Errors and all true
identified outages (the right two quadrants of Figure 8). Known outages are only
“known” because they are located in the model by highlighting zeros in the dataset prior
to increasing data intervals. Known outages include Type II Errors and true identified
outages (the bottom two quadrants of Figure 8).

In the real world Type I Errors would make an operator believe that their system
is performing worse than it really is. If they act upon information with Type I Errors they
could be wasting money on a problem that doesn’t exist. Type I Errors in this analysis
are measured against identified outage to give a confidence of how many outages that
were identified were actually true outages.

Conversely, Type II Errors effect how confident an operator is that they have
captured all of the true outages. High Type II Errors mean an operator is not confident
that all the outages have been captured or identified. Type II Errors in this analysis are
measured against known outages to illustrate how many outages are not being identified.
In the real world, the existence of a Type II Error must be discovered or reported by some
external means. This would mean users reporting outages and operators verifying that
outages have occurred; a process that has many opportunities to fail. Also, electrical

infrastructure has the ability to reset itself with reclosers, taking up to three minutes to
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operate (Pereira, Pérez-yauli, & Quilumba, 2017). These momentary outages could be
lost if users do not detect and report them. Additionally, for single facility outages, users
could reset breakers if they have access to them and the information could be lost or not
communicated that an outage had occurred.

A Design of Experiments (DOE) gives the analysis validity. The DOE began by
using 20 percent of all of the possible homes, or 88 houses, in Austin, TX from the Pecan
Street dataset. These 88 homes were selected using a random number generator in excel.
These homes amounted to 480 million data points. R, with R Studio, was used to clean
and analyze the data. An additional 5 percent, or 22 homes, of the Pecan Street homes in
Austin, TX were also collected and used to test the ideal critical values that were found
by using the other 88 homes.

This ideal critical value was also tested against the Ellsworth AFB energy usage
data. Data collected from Ellsworth AFB was given in cumulative energy usage. This
means energy usage was calculated by finding the difference from the previous energy
usage. Additionally, roll over error effected two of the 87 electrical meters reported.
Because Ellsworth AFB is located in South Dakota and the ideal critical values were
created using data from Texas, it is unclear if the ideal critical values will be effective.
Another issue is that the Ellsworth AFB data was only given in daily energy usage
intervals, making locating outages difficult and limiting validation of outages to only
outages lasting longer than 24 hours. Error information for locating outages was also

collected for facilities that contained outages (zeros in the data).
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Figure 9 shows the trade space for the sensitivity analysis of the data interval.
The data becomes more robust and useful as the interval decreases, but not without a
cost. Data storage and handling, including transfer, becomes more difficult as the
interval decreases. Additionally, meters that can handle higher amounts of energy are
more expensive (Carnley, 2017). Less data handling and storage can be accomplished
with larger intervals, thus reducing the required server sizes and saving money on
acquisition costs, operations and maintenance of those servers. With larger intervals, the
granularity of the data is lost, thus making it less useful for understanding minute
variations. Aggregation of multiple facilities under a single meter was not looked at in
this analysis, but it is also a key factor that effects the cost of the meter. Currently, as
described in Chapter 2, the AMRS uses 15-minute intervals and is used only for single

facilities or single transformers (when a facility has more than one transformer).
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Figure 9. Meter Configuration

Once the above methods were used, an in-depth analysis of how to select the ideal
critical values was conducted. In the initial analysis, the 90" percentile of all the outages’
standardized distances were used to select the critical value. This concept is illustrated
on the /eft half of Figure 7, referred to as the “First Percentile.” In this sensitivity
analysis, the selection of the critical values were evaluated 10 different times for the 95™,
85™ ... 15™ and 5™ percentiles for each combination’s outage standardized distances. In

the initial analysis, the 90™ percentile was also used to calculate ideal critical value from

the critical values, as seen in the right half of Figure 7, referred to as the “Second
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Percentile.” This percentile was also altered in this sensitivity analysis in order to
calculate the ideal critical value. Again, the selection of the ideal critical values were
evaluated 10 different times for the 951, 85 ... 15® and 5% percentiles for each
combination’s critical value. All possible combinations were explored; a total of 100
different ways to choose the ideal critical value. Each of these 100 percentile
combinations contain error information for locating outages. As the percentiles go down,
Type 11 Errors will increase and Type I Errors will decrease. This will create a risk
decision for which error to minimize. Theoretically, the 95" percentile will find almost
all of the outages, but it will also increase the number of incorrectly identified intervals as
outages (Type I Errors). Conversely, the 5™ percentile will find less real outages
(increase Type II Errors) but it will also decrease the number of incorrectly identified
intervals as outages. There was a percentile with the least number of total errors (Type I
and Type II Errors combine), but the specific type of error must not be overlooked.

An additional sensitivity analysis was conducted on the Matlab tool developed by
the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Energy Systems
Group. The change in recommended electrical system architectures were recorded and
analyzed while varying the number of reported outages for a single year by altering the
System Average Interruption Frequency Index (average number of outages in a year).
Additionally, the unserved load for each architecture was also analyzed for the different
reported outages. MITLL stated their largest issue was valid outage data (Nick Judson &

Pina, 2017). The sensitivities of the tool can be seen by simulating improved outage data
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or in other words the outage collection effectiveness. This was simulated by comparing
the current Air Force Standard of 15-minute data collection intervals and the currently
available 1-day intervals to a one-minute data collection interval. As described in
Chapter 2, the Air Force only collects outages lasting longer than 8 hours. The
assumption is made that the methods outlined in this thesis were used to collect outages;
all outages including those less than 8 hours. By comparing the system architectures,
with their accompanying amount of unserved load, the risks of using a 15-minute or 1-

day interval can be seen against using a one-minute interval.

3.5 Data Processing

All figures for this section will be found in Appendix 1 because of their size. R,
with R Studio, was used to process the data. There were two major phases in the
programing: Model Building and Model Validation. Figure 41 shows the conceptual
flow of the Model Building code. This model sets the framework for the validation of the
data processing, as seen in Figure 42. Aggregation of multiple buildings on a single
meter was not looked at in this thesis, but Figure 43 gives a concept of how it could be
done.

All data from Pecan Street are first read into the program. The raw data has 3
columns: Time (with day, month, and year), energy usage (in units of average kW over
the one minute data collection interval), and Data ID (or the specific home in the dataset)

(Pecan Street Dataport, 2017). While it is true that a kW is a measure of power, it can be
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classified as energy usage because the time period over which the average power
occurred is given.

The Model Building code takes each individual Data ID and runs the process
outlined below. The data must be cleaned for errors by placing the data in chronological
order, removing duplicate entries, removing “NA” values, and making all negative
energy usage equal to zero, thus treating them as an outage/malfunction. The code finds
the first full day of data and then replaces any chronological gaps in the data with zeros,
again treating them as an outage/malfunction. The outages/malfunctions are then located
by searching for zeros and their locations are saved for use later in the code. The code
then runs another loop for the 36 different possible data collection intervals as described
in the previous section. The data collection interval is simulated by adding the next
minute’s worth of data to the first minute’s worth of data until the desired data interval
width is reached. The code will then enter the final loop for each of the six different
possible data combinations, as described in the previous section. The code groups the
data by the desired combination and then finds that specific time of year’s mean energy
usage. Next, the code finds the standardized distance from the mean for all of the
outages/ malfunctions according to its specific corresponding mean. These values are
defined as “z-scores” in the code. These z-scores are then placed in descending order to
locate the 90™ percentile of all z-scores for that specific Data ID, interval, and
combination. This value is defined as the “critical value” in the code because 90 percent

of the other z-scores are at or below this value. All other values, regardless of if it was an
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outage/ malfunction or not, are also checked against their specific corresponding means.
Outages/malfunctions can then be predicted by defining all data below or at this critical
value as an outage or malfunction.

This process will repeat until all Data IDs have been evaluated. With all 88 Data
IDs complete the ideal distance from the mean, defined as the “ideal critical value,” can
be estimated by finding the 90" percentile of all critical values by interval and
combination. This ideal critical value is the ninth largest critical value of the 88 different
Data IDs test (90 percent of 88 rounded up is 80). This value can theoretically locate 90
percent of the outages in any other data set. To test this hypothesis another virgin dataset
was tested using these ideal critical values.

The Model Validation follows a similar process to the Model Building phase.
The ideal critical values from the Model Building are the only data used in the Model
Validation phase. Again, the data must be cleaned and outage location is stored in order
to gauge the effectiveness of the ideal critical values. Additionally, the data collection
interval and the combination are varied. All values are measured against their own
specific time of year’s mean energy usage to determine the standardized distance from
the mean. With the ideal critical values already predetermined, the standardized
distances can be placed in one of the four quadrants defined in Figure 8: good match
outage (true negative), good match no outage (true positive), Type I Error (false positive),
and Type II Error (false negative). This will be the true measure of the effectiveness of

the ideal critical values.
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The aggregation data processing could done by following both the Model
Building and Model Validation exactly the same except for adding an additional step.
This additional step is the aggregation of energy usage data from different homes. It is
vital that the aggregation is performed using the exact same timetable to account for
variation in energy usage due to weather, holidays or any other global event that could
affect energy usage. Once the ideal critical values are calculated and they are validated
against the virgin dataset, the effectiveness of the ideal critical values are again measured

using the four quadrants defined in Figure 8.
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IV. Analysis and Results

4.1 Introduction

Many in-depth topics emerged and were included after applying the research
questions in Chapter 1. The analysis was complete using R, R Studio, and Matlab.
Sensitivity analysis was performed to optimize solutions and expound on relevant
questions. First, the basis of the analysis was the use of Pecan Street data to see if
locating outages using advanced meters can be accomplished by using means and
standard deviations of combined data. All other analysis builds off of these initial
findings. Next, locating the outages was conducted using aggregated data (see Table 2).
After that, the findings from the Pecan Street analysis were applied to Ellsworth Air
Force Base (AFB) to measure applicability of the methods to Air Force data. Then, the
Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Tool was used to
compare different data collection intervals and their effect on selecting electrical system
architectures. Finally, a critical review of the electrical projects was conducted on the

Integrated Priority List (IPL).

4.2 Pecan Street — Proof of Concept

Meticulous data processing was vital to ensuring the proper data was being saved
and operated upon. The Pecan Street one-minute interval data was analyzed as described
in Chapter 3. The model building was complete on 88 homes from Austin, TX. With six
different possible combinations and 36 different possible intervals, there were 216

different “Ideal Critical Values.” These ideal critical values were found by, first, taking
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the 90 percentile for the critical values for each Data ID, interval, and combination
(known as a critical value). Next, the 90™ percentile of all 88 Data IDs’ critical values for
each interval and combination to find the ideal critical value. These ideal critical values

can be seen in Figure 10.
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Figure 10. Ideal Critical Values for each Combination and Interval
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With the model building complete, the ideal critical values can be tested against a
virgin validation test dataset of 22 homes. Again for each combination and interval, the
minute by minute data is transformed to the correct interval width and tested against the
ideal critical value. Errors, as described in Figure 8, are calculated to examine the
effectiveness of the ideal critical values at pointing out the outages. Figure 11 shows the
overall effectiveness of the model. It is important to note that the x-axis is on a custom
scale reporting the actual intervals used (e.1. it is not a log or normal scale). This figure
says, unconditionally, we can trust the results of the model X percent of the time. The
52-week combination, or annual combination, and the 26-week combination, or bi-annual
combination, clearly out perform all other combinations as seen in Figure 11. Using a
combination of 52 weeks and a 12-hour interval in Austin, TX proves to be the most
reliable of the six combinations and 36 intervals investigated in this part of the analysis.
This particular interval and combination was correct 98.4 percent of the time. The 1.6

percent that was incorrect can be accounted to either Type I or Type II Errors.
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Validation "Good Match" as % of Total Sample Space
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Figure 11. "Good Match" vs. Total Sample Space for each Combination and Interval

Further analysis of the errors is required because Type I and Type II Errors have
different impacts on real world outage detection and advanced meter operations. Type 11
Errors are known outages that had a standard deviation higher than the ideal critical
value. Due to this, they are labeled as “good” intervals when really an outage has

occurred (known as a false negative). Type II Errors were very small compared to Type I
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Errors (compare Figure 12 to Figure 13). There is also no clear distinction between any

of the combinations, but the errors increase as the interval increases.

Validation Type Il Errors as % of Known Qutages
"X% of actual outages that were not identified"
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Figure 12. Type II Errors vs. Known Outages for each Combination and Interval

Type I Errors are measured against identified outages to give a confidence of how
many outages that were identified are actual true outages. Unlike Type II Errors, Type |

Errors have a stratification and clear best combination for most intervals as seen in Figure
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13. The Type I Errors vary from interval to interval and do not have the clear pattern that

the Type II Errors have.

Validation Type | Errors as % of All Identified Qutages

"X% of the identified outages were incorrectly specified as an outage"

80
I

70
!

60

Percent Errors (%)

ShvMean Combinations

1 Week
2 Weeks

20

—
—

— — 4 Weeks/Monthly
- 13 Weeks/Seasonally
—

26 Weeks/Bi-Annually
52 Weeks/Annually

10

1 T T T 1T 1T 1T 1 T T 1T 1T T 17 T T T T 1T T T T T T T [
123456889 12 16 20 30 36 45 60 80 96 144 180 288 480 1440

Interval {minutes)

Figure 13. Type I Errors vs Identified Outages for each Combination and Interval

Each Data ID was effected differently by the ideal critical values. Figure 13
shows each individual Data ID from the virgin dataset and how many errors are found for

all possible intervals. It shows that some Data IDs are not effected at all by errors while
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others account for a large portion of total errors. It is also important to note that both

Type I and Type II Errors are graphed together and in no case are Type II Errors visible

clearly showing that Type I Errors dominate in this analysis. This finding sparked

another analysis for looking at the sensitivities of the ideal critical value (see section 4.3

Pecan Street Ideal Critical Value Sensitivity).

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 1 Week

§~ H Type | Emor
T o | e M Type |l Emor
g @

I}

2

& o

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 4 Weeks/Monthly

B Type | Emor
o M Type || Evor

Percent (%)
3

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 26 Weeks/Bi-Annually

o]
w
? H Type | Emor
= o H Typz |l Emor
-E (2]
o
2
£ o
=
= L I e O
w s ] o w P w (o] - ('] -— -
- = o — — =
(2] ] — -+ oo (=] o =t =] [x] ]
o o~ —
Diata I index

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 2 Weeks

o

I}
g‘ H 7Type | Emor
oo ] . H Type |l Emror
g &
T
.
£ o ] S

nowm ow oW M~ @ oM B O
o = = = = -

— i P i (1] w o o -
— o —
Data I index

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 13 Weeks/Seasonally
o |
o
B Type | Eror
M Type |l Emor

Percent (%)
30

10

(s
=+ 8 [ Y O o I = | w o o O ~

Data I3 index

Pareto Chart of Errors by DatalD as % of Total Values
Combine every 52 Weeks/Annually
2
B Type | Emor
2 H Type || Emror

Percent (%)

010

M W W MMM o= M O O W@
[ — - =
[T T S O < A = - = B = Y o R
- = —

4 — =
Data I index

Figure 14. Pareto Chart of Errors by Data ID for all Interval
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Figure 15 was used to observe if a trend exists between how many years’ worth of
data was used and errors in the different Data IDs. No clear trend can be seen. The Data

IDs are arranged in the same order as Figure 14.
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Figure 15. Amount of Data in Descending Total Error Order for all Intervals
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As in Figure 15, Figure 16 was created to attempt to identify a trend between
mean outage length and total errors observed errors. Again, Data IDs are arranged in the
same order as Figure 14 and there appears to be no clear trend.
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Figure 16. Mean Outage Length in Descending Total Error Order for all Intervals

The findings from this part of the analysis were that, first, the 52-week and 26-

week combination, with the former being slightly better, performed the best for Type I
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Errors as well as overall model effectiveness. Second, all combinations perform similarly
for Type II Errors. Third, the number of Type I Errors is far greater than the number of
Type II Errors. And finally there is no clear trend between mean outage length or the
amount of data to the amount of errors. The R Studio raw code for this analysis can be

found in Appendix 1.

4.3 Pecan Street Ideal Critical Value Sensitivity

This analysis was conducted because the ideal critical value is found using user
defined parameters that were not optimized for performance, but rather just proof of
concept. In all other analysis to this point, the critical value was found using the 90™ first
percentile and 90™ second percentile. For this analysis, to calculate the individual Data
ID’s critical value, the standardized distances from the specific mean energy usage for
each outage were ordered and the given percentile was used to locate the critical value for
each Data ID (see the left half of Figure 7). Once complete, the 88 critical values for
each combination and interval were ordered and the second percentile, used for finding
the ideal critical value, was also varied (see the right half of Figure 7). This amounts to
100 different possible ways of selecting the ideal critical value. Again these ideal critical
values are tested against the same virgin data set as in previous sections.

Figure 17 shows the 100 different Ideal Critical Values that were used in this
section. The values represented are the average value with one standard error for each
percentile. They are ordered by second percentile (right side of Figure 7) then first
percentile (left side of Figure 7). This figure is a summation of all intervals and
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combinations (similar to Figure 10). Appendix 3 contains all the individual ideal critical
value graphs for the 95 percentile of the second percentile. These graphs are
represented by the first ten values of Figure 17. Appendix 3 shows how the ideal critical
values change as the first percentiles changes. Appendix 4 contains all the individual
ideal critical value graph for the 95" percentile of the first percentile. These graphs are
represented by the top value of each group of ten as shown in Figure 17. As predicted in

Chapter 3, the ideal critical values decrease as the percentile size decreases.
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Figure 17. Ideal Critical Values for Each Percentile
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Error information was gathered by using these ideal critical values to located
outages in the virgin dataset. The prediction that Type I Errors increase and Type 11
Errors decrease as percentiles increases is proven in Figure 18 and Figure 19,
respectively. These examples are the extremes of the spectrum, but they effectively show
how important it is to select the correct first and second percentiles to manage the trade-

off between Type I and Type II Errors.
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Figure 18. Type I Errors for the Sth and 95th (first and second) percentiles
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Figure 19. Type II Errors for the 5th and 95th (first and second) percentiles

The key decision now becomes finding the balance between Type I and Type 11
Errors. Figure 20 shows the Type I Errors for all 100 different percentile combinations
used (the percentiles are in the same order as Figure 17). As the second percentile goes
down (the second percentiles are separated by distinct black and gray bars in Figure 20)
there is a greater stratification and variance in the amount of errors. These errors are a
summation of all errors for all six combinations and 36 intervals used in this analysis. A
5™ first percentile and 5™ second percentile minimizes Type I Errors to 1.26 percent.
However, this percentile combination creates the largest amount Type II Errors of 0.195
percent, as seen in Figure 21. The specific breakdown for interval and combination for

this percentile combination can be seen on the left of Figure 18 and Figure 19.
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Type | Errors as % of Identified Outages for all Combinations and Intervals
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Figure 20. Type I Errors Ordered by Second then First Percentile

Similar to the Type I Errors, the Type II Errors for all 100 percentile
combinations are given in Figure 21. Again, the stratification and variance of errors can
be seen as the second percentile increases. Also, these errors are a summation of all
errors for all six combinations and 36 intervals used in this analysis. The total number of
Type 11 Errors is roughly 1/2000™ of the total numbers of Type I Errors. Therefore, a 5%

first and 5™ second percentiles reduces the total of both types of errors (regardless of
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which type of error) based on sheer numbers. A 95" first and 95% second percentile
reduces Type II errors to 0.0367 percent but maximizes Type I Errors to 87.9 percent as
seen in Figure 20. The specific breakdown for interval and combination for this

percentile combination can be seen on the right of Figure 18 and Figure 19.
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Figure 21. Type II Errors Ordered by Second then First Percentile

Total Type I and Type II Errors were evaluated against their respective

maximums to normalize their size difference. Figure 22 and Figure 23 represent the
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normalized Type I and Type II Errors, respectively. These values are normalized by

dividing each value by its respective maximum.

% of Max Type | Errors for all Combinations and Intervals
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Figure 22. Maximum Normalized Type I Error
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% of Max Type Il Errors for all Combinations and Intervals
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Figure 23. Maximum Normalized Type II Error

To optimize the model and reduce the number of outages, the two normalized
errors are added together to see which percentile combination minimizes the combine
percentage of maximum errors for each type. Figure 24 graphs both Type I and Type II
Error percentage of maximum errors together on the same plot. This graph exposes the

smallest combine percentage of maximum errors at the 5 first percentile and 85" second
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percentile. These results are limited because they aggregate all the intervals and

combinations together, thus eliminating their potentially significant effects.
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Figure 24. Combine Maximum Normalized Error

At the 5™ first percentile and 85 second percentile, Type I Errors are 42 percent
of the maximum and Type II Errors are 49 percent of the maximum. The specific

breakdown for interval and combination for this percentile combination can be seen in
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Figure 25. A 52-week interval and one-day interval are the best option for this percentile
combination with 0 percent Type II Error and 59 percent Type I Error.
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Figure 25. Ideal Critical Value, Type I and Type II Error for the 5th and 85th (first and

second) percentiles
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All Type II Errors for each of the 100 percentile combinations in this analysis
have a similar shape and stay very small the closer they are to the one-minute interval.
This area that has the ability to have the greatest impact on the number of total errors. By
using a smaller interval the Type II Errors are minimized and the focus can be placed on
the Type I Errors (the larger proportion of errors). Figure 26 illustrates this idea.

Figure 26 through Figure 29 shows the one percent of the lowest total errors for
all iterations of interval, combination, first percentile, and second percentile. Figure 26
show that to reduce error intervals of 96 minutes or less are ideal. There is no clear
interval that stands out amongst the rest, but the graph does show that no intervals were
highlighted above the 96-minute interval. Figure 27. Histogram of Lowest One
Percent by CombinationFigure 27 shows that a combinations of 52 weeks is ideal for
reducing errors; accounting for 62.5 percent of the sample space. Figure 28 show that the
5™ and 15™ first percentiles account for 67 percent of the sample space with 5™ first
percentile accounting for 44 percent of the sample space. Figure 29 shows that the 5™
second percentile accounts for 91 percent of the sample space. The single best iteration
was a 9-minute interval, 52-week combination, and a 5™ percentile for both for the first

and second percentiles which is within the ranges specified above (see Table 4).
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Figure 26. Histogram of Lowest One Percent by Interval
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Figure 27. Histogram of Lowest One Percent by Combination
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Histogram of Top 1% Lowest Total Errors by 1st Percentile
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Figure 28. Histogram of Lowest One Percent by First Percentile
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Figure 29. Histogram of Lowest One Percent by Second Percentile

83

www.manharaa.com



The above process was completed again for the reduction of Type I and then Type
I Errors and their graphs are located in Appendix 5 and Appendix 6, respectively. This
analysis summarized in Table 3. There is no consensus for interval range between the
three reduction strategies. 52-week combination, and a 5™ percentile for both first and

second percentiles were seen in each of the three reduction strategies.

Table 3. Best Iterations Ranges to Reduce Errors

Best at 1st Percentile [ 2nd Percentile
. Int IR Combination R
Reducing erval Range ombination Range Range Range

Total Error 1-minute to 96-minute 52-Week only 15th to Sth Sth only
26-Week to 52-

Type I Error 15-minute to 1-day Week 25th to Sth Sth only
Type II Error* 1-minute only 52-Week only Sth only S5th only
*52-Week Combination, 5th first and second percentiles also reduced for
Type I Errors

The individual best iteration for reducing total errors allowed on average 76
minutes of Type I Error and 66 minutes of Type II Error every year. In contrast, if the
same methodology was applied for reducing only Type I Errors, there would be two
minutes of Type I Error and 533 minutes of Type II Error every year. Again, if Type II
Errors were reduced, there would be 152 minutes of Type I Error and less than one
second of Type II Error every year. Minutes per year is used to evaluate the amount of
error because the different interval lengths change how many individual errors are
reported. For example, an iteration with a one-minute interval could report 50 Type I
Errors while an iteration with a 50-minute interval would report only one error for the

same situation. Table 4 displays the different individual “best” iterations and their
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effectiveness at reducing the errors. It is important to note that combination, and both the
first and second percentiles are the same for all iterations; the same values identified in
Table 3. Appendix 5 and Appendix 6 shows similar graphs as Figure 26 through Figure

29 for the reduction of Type I and Type II Errors, respectively.

Table 4. Individual Best Iterations for Reducing Errors

Best at Interval | Combination Ist 2nd Minutes of Type | Minutes of Type 11
Reducing Percentile| Percentile | I Error per Year | Error per Year
Total Error 9-minute | 52-Week Sth 5th 76 66
Type I Error  [96-minute| 52-Week 5th 5th 2 533
Type Il Error* | 1-minute | 52-Week 5th 5th 152 0.01

*400 of the 600 1-minute intervals contained only 1 Type II Error. Represented here
is the iteration that also reduced the number of Type I Errors

Success in this analysis is when the number of errors are reduced. Errors can be
reduced by using different percentiles to select the ideal critical value. The effects of
interval and combination should also be considered when selecting an outage detection
strategy as outlined in this research. Leaders or decision makers must determine which
risks they are willing to take. Type I Errors generally happen 2000 times more often than
Type II Errors when using this methodology, but this number can be greatly decreased if
specific iterations are chosen. A leader or decision maker could assign weights to the two
types of error to make the decision more quantitative. The analysis conducted above did

not assign weights and simply attempted to reduce the number of errors.

4.4 Ellsworth Air Force Base Validation
The dataset received from Ellsworth Air Force Base (AFB) contained 87 electric

meters with daily energy usage. After removal of nine meters that reported zero energy
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usage for all days reported, analysis was completed on 78 meters. Some meters had very
sporadic energy usage with the majority of the data being zeros (Data IDs of 21 and 70 in
this analysis). All meters only reported daily energy usage intervals which did not allow
for interval optimization because daily usage is the maximum available interval in this
analysis. The ideal critical values used were the values that reduced the overall
percentage of Type I and Type II Errors; 5 first percentile and 85% second percentile
(see Figure 25). This resulted in a “Good Match” for over 98 percent of the data for each
combination (see Figure 30). Ellsworth AFB data had the best good matches with a 1-
week combination instead of a 52-week combination as seen in section 4.2. A 1-week
combination equated to 99.8 percent good match. Additionally, there is no Type II Errors
because there is no varying of the interval width and the processing code finds “known”
and “identified” outages by searching for zeros. Further analysis needs to be completed

with Air Force data with a smaller data collection interval.
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EAFB "Good Match™ as % of Total Sample Space

"X% of the total sample space that contains no errors ("Good Match")
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Figure 30. Ellsworth AFB "Good Match" vs. Total Sample Space

The ideal critical values and code did locate all the known outages but it also
identified many intervals that weren’t outages (Type I Error). There was more errors
than true outage detection in all combinations but two as seen in Figure 31. A 1-week
combination is the best of the six combinations. A 1-week combination has a 10 percent

error, meaning 90 percent of indicated outages are indicated correctly.
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EAFB Type | Errors as % of All Identified Outages

"X% of the identified outages were incorrectly specified as an outage"
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Figure 31. Ellsworth AFB Type I Errors vs Identified Outages

Figure 32 shows the percentage of outages by the Data ID. There was Data IDs
that contained a few errors, one that contained five times the errors and some that contain
none. The figure shows unconditionally that Data ID number 6 could not be trusted more

than 10 percent of the time, regardless of if there was an outage or not.
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Pareto Chart of Total Errors by DatalD as % of Total Values
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Figure 32. Pareto Chart of Ellsworth AFB Errors by Data ID

These Data IDs were then graphed in the same order to look for trends in outage
length. Figure 33 shows that most Data IDs with sporadic energy usage, Data IDs 21 and
70, are actually better for locating outages or times with zero energy usage; located to the
far right. While it is apparent that these facilities are only used in short bursts, they can
still be analyzed for energy usage and outage information if the occupation characteristics

and patterns are better understood.
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Mean Outage Length in Order of Highest Errors
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Figure 33. Ellsworth AFB Mean Outage Length in Descending Total Error Order

By mapping the exact date of the outages, a few trends appeared. In Figure 34, a
few days pop out as being days with increased outages. Because two meters contained
very sporadic energy usage, there is a constant outage level throughout time period.
These two meters break the earlier assumption that facilities will always have a small

amount of power draw. By looking at the metadata for these two meters, they report
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energy usage for an empty warehouse and an alternate location for the command post to

run emergency operations (buildings 7262 and 1011 or meters 23991390 and 56212956).

Outages in a Day
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Figure 34. Timeline of the Number of Outages

Figure 35 shows the exact date of the top ten days of outages in the seven years’
worth of data. South Dakota’s hard winters may have been a factor in these top 10
outages. With only 78 meters in the analysis, having 71 go down on 10-11 March 2015

possibly shows a base wide outage that was only mitigated by 7 generators. These

91

www.manaraa.com



outages are at the mercy of the commercial power supplier. If many outages are being
seen base wide, then a more political strategy must be used to work with the commercial
supplier to provide a better power quality. Other, smaller groupings of outages could
point to certain areas of the base that have degraded electrical infrastructure. This type of
analysis can be used to identify specific electrical branches that have more outages than
others. This stratification can advocate for funding in specific areas over other areas on
the same base. Doing so could also trace the facility outages back to a single point

between the facilities and the commercial power supplier connection.
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Pareto Chart of Most Qutages in a Day (Greater than 4 in a Day)
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Figure 35. Pareto Chart of Most Outages in a Day

In conclusion, better data is required for a thorough analysis of the ideal critical
values for Ellsworth AFB. Additionally, with the limited access to real Air Force data, it
is unclear if ideal critical values from differing geographical locations (like Texas and
South Dakota) are universally effective. Finally, it was seen that interconnected systems,
like Air Force Installations, will have system wide effects that can be reported from

multiple individual measuring points (see Figure 34 and Figure 35).
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4.5 Massachusetts Institute of Technology Lincoln Laboratory Tool

The Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Tool
was developed for the DoD to quantify energy resilience and create a way to produce life
cycle assessments of different electrical grid projects. MITLL stated their largest issue
was valid outage data (Nick Judson & Pina, 2017). This analysis was tailored to show
the impact of having better outage information provided by advanced meters. This tool
can be tailored to any base and any configuration. For this analysis the base line for all
inputs were left except for one; the System Average Interruption Frequency Index
(SAIFI). The SAIFI tells the Matlab program how many outages occur on average per
year. A smaller SAIFI indicates a more reliable electrical distribution infrastructure.
This is then converted into a mean time to failure metric that is used in a probabilistic
Monte Carlo simulation with 1,000 runs. The preset location used was Joint Base Pearl
Harbor-Hickam. This base was used because it is an Air Force Joint Base and it has high
pressure to perform because of Hawaii’s high cost of electricity.

Type 11 Errors for 12 distinct iteration of interval, combination, and both first and
second percentiles were used to setup the sensitivity analysis of the MITLL Tool. Table
5 displays the SAIFIs associated with these 12 iterations. The 52-week combination was
used in all iterations because it has proven to be the most useful in this analysis. The first
percentile had very minimal effects on the outcome of the SAIFI. A one-minute interval
from Table 4 proved to reduce the Type II Errors close to zero; this was chosen to be the

baseline. A baseline of 10-SAIFI simulates a system that has extremely few to no Type
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II Errors. Type I Errors were not analyzed in this section. The SAIFI reduces as the

intervals grow in width from one minute to one day. And as the Type II Errors increase

(as the interval width increases), there is more outages being missed, thus the calculated

number of outages is underestimated and the SAIFI becomes incorrect. For all 12

situations in Table 5 the SAIFI should be 10, this causes issues with designing electrical

systems. The differences in SAIFI and Type II Errors can be seen as the iterations

change in Table 5

Table 5. MITLL Sensitivity Analysis Setup

Ist 2nd Calculated | Type II
Interval | Combination | Percentile | Percentile SAIFI Errors
I-min 52-week 5th 95th 10 ~0
1-min 52-week 95th 95th 10 ~0
I-min 52-week 5th 5th 10 ~0
I-min 52-week 95th 5th 10 ~0
15-min 52-week Sth 95th 9.994 0.000616
15-min 52-week 95th 95th 9.994 0.000642
15-min 52-week 5th 5th 9.973 0.002655
15-min 52-week 95th Sth 9.973 0.002802
1-day 52-week Sth 95th 9.377 0.06228
1-day 52-week 95th 95th 9.377 0.06228
1-day 52-week 5th Sth 8.839 0.114955
1-day 52-week 95th Sth 8.839 0.116109

The baseline SAIFI was set to 10 outages per year. This number is within the

range used in other simulations preloaded on the MITLL Tool. A critical output from the

tool was the recommended electrical system architecture and its corresponding unserved

electrical load. The top graph is ordered in descending cost per KWh and the bottom
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shows the unserved load in the same order as the top graph. The black bars in the bottom
graph shows the current electrical infrastructure architecture. This baseline is facility
sized generators and commercial power with a total unserved load of 105 MWh (200
times more than the maximum on the graphs below). Appendix 7 shows the makeup of
the different architectures found on top of each set of graphs. Blue bars indicate
architectures that are worse off than the black baseline bar. Green bars are architectures
whose cost and unserved load are lower than the baseline. Figure 36 shows the 10-SAIFI

base line for a one-minute interval of all first and second percentile iterations.
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Figure 36. MITLL Tool Output for One-Minute Interval/ 10.0 SAIFI

For a 15-minute interval the Type II Error was 0.3 percent and 0.06 percent for
the 5 and 95" second percentiles, respectively. Applied to the SAIFI, a 15-minute
interval would suggest that 9.97 and 9.994 outages per year occurred. This was
calculated because a 0.3 percent Type Il Error translates to 3 missed outage for every

1000 actual outages. On the surface level it may seem desirable to only have 3 missed
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outages, but with a one-minute interval there is, or theoretically is, zero missed outages.
Figure 37 shows the 15-minute interval/5™ second percentile output with a corresponding
SAIFI 0f 9.97. Figure 38 shows the 15-minute interval/95™ second percentile output with
a corresponding SAIFI of 9.994. Very little difference can be seen visually between
these two figures. As with most iterations from Table 5, the following architectures were

at least 100 times better at providing continuous power and consistently cheaper: 45, 30,

15,41, 11, and 26.
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Figure 37. MITLL Tool Output for 15-Minute Interval/5™ Second Percentile/9.97 SAIFI
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Figure 38. MITLL Tool Output for 15-Minute Interval/95™ Second Percentile/9.994
SAIFI
Figure 39 shows the one-day interval/5™ second percentile output with a
corresponding SAIFI of 9.377. Figure 40 shows the one-day interval/95™ second
percentile output with a corresponding SAIFI of 8.84. Theoretically, as SAIFI goes down
so will the unserved load. This lower SAIFI hides outages and the true number of
outages are not used to select the ideal system using the MITLL Tool. Figure 39 and
Figure 40 show near perfect outputs for the top six architectures. Again this is a false
representation of the system due to the Type II Errors that masked the true number of
outages. Figure 40 also shows that architecture 45 is no longer a cheaper option.

Depending on the situation, 45 could have been used, but may have been eliminated as an

option due to these Type II Errors.
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The problem with the additional Type II Error is that the operator is over
confident in the status of their electrical system. They think they have less outages a year
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than they really do. Even a small difference effects the outputs greatly as seen in Figure
36 compared to Figure 40. Table 6 shows the results from the analysis of the effects of
Type II Errors. The baseline ideal architecture was 30 which included: facility level and
centralized standby generators, islandable photovoltaics, uninterrupted power supplies,
fuel cells and microgrids. This architecture was the same for all cases but the last which
had an ideal architecture of 15. Architecture 15 included the same items at 30 except
twice as many centralized generators with no facility level standby generators and
cogeneration of heat and power. If anything other than the baseline is used then the
realized benefits would be less than what is expected. If a design was created thinking 15
is the best architecture and the truth was that 30 was the best, then not only would there

be less benefits but also the incorrect architecture would be constructed.

Table 6. MITLL Ideal Architecture Results

Ist 2nd Calculated Ideal Unserved

Interval | Combination | Percentile | Percentile| SAIFI | Architecture |load (KWh)
N I-min | 52-week 5th 95th 10 30 79
% 75 I-min | 52-week 95th 95th 10 30 79
§ 2| 1-min | 52-week Sth Sth 10 30 79
I-min | 52-week 95th 5th 10 30 79
o o | 15-min | 52-week 5th 95th 9.994 30 60
£ .§ 15-min | 52-week 95th 95th 9.994 30 60
;; 5 [ 15-min | 52-week 5th 5th 9.973 30 45
15-min | 52-week 95th 5th 9.973 30 45
- 1-day | 52-week 5th 95th 9.377 30 30
5 o | I-day | 52-week 95th 95th 9.377 30 30
2 <[ 1-day | 52-week | 5th 5th 8.839 15 10
- 1-day | 52-week 95th 5th 8.839 15 10
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The system will perform as seen in Figure 36 but the operator will think they are
paying for the performance as seen in Figure 40. Proper identification is helpful because
the more options to choose from makes modernizing and upgrading easier and possibly

cheaper.

4.6 Summary
The three investigative questions and their simplified answers are as follows:
i.  Can outages be found using historical advanced meter data with Means and
Standard Deviations? If so, what Standard Deviation should be used?

A.  Yes, Means and SDs can be used to identify outages. Ideal critical values
can be used to estimate an outage timestamp, but there are associated risks
and errors for which ideal critical values are chosen as seen in the
percentile sensitivity analysis.

ii.  What is the optimum data interval and combination to identify outages using
historical advanced meter data?

A. A 52-week combination (annual average) and 5™ first and second
percentiles produced the best results for correctly identifying data.
Selecting which interval to use depends on which type of error is
attempting to be reduced.

iii.  How does advanced meter data affect electrical grid modernization planning

including advanced energy production technology?
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A.  Advanced meter data can deliver outage information for the use of
influencing future electrical projects. Good meter data gives confidence
that designs will be accurate.

These questions were answered through the use of the analysis in this chapter. Analysis
was conducted in a way to produce results and recommend improvements to the Air
Force. Advanced meter data and systems already in place have the power to help

influence operations, maintenance and construction efforts in the DoD.
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V. Conclusions and Recommendations

5.1 Conclusions of Research

The United States Air Force standard of 15-minute data collection intervals for
advanced meters is good for benchmarking, facility energy intensity comparison, and unit
energy use comparison (Department of the Air Force, 2017a). The data collected could
also be used for locating outages and improving the way the Air Force spends its money
to improve its electrical systems. This research attempted to show that historical
electrical meter data could be used to find outages. The concept combination was created
to analyze different data collection intervals. These concepts are far from being perfect
and warrant a closer look by future researchers.

A 52-week combination and 5™ first and second percentiles produced the best
results for correctly categorizing data. It was also found that smaller intervals also assist
in reducing errors. This was accomplished through the use of ideal critical values that
were developed by using data from residential homes in Austin, TX through Pecan Street.
These specific conclusions are limited to Austin, TX but the methods used could be
validated for a larger geographic region with further testing and more data. The ideal
critical values were applied to electrical energy usage for Ellsworth Air Force Base
(AFB). Due to the large width of the data collection interval, results from this analysis
were very limited. The Ellsworth AFB analysis did, however, prove an assumption
wrong that if an advanced meter was reporting zero energy usage that there was an
outage or malfunction. This is because low use or unoccupied facilities could actually
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have zero registered energy usage or amperage. This finding limits the application of this
thesis to occupied facilities with electronics. In the end, the ideal critical values located
outages with a 10-40 percent Type I Error (see Figure 31). Additionally, power can be
disconnected for safety purposes during routine maintenance and by using the
methodology in this thesis this would be classified as an outage. These issues can be
overcome with detailed record keeping of the maintenance, repair and real property
records. This points to the fact that outage detection is as much analytics as it is
documentation.

The way the critical values are determined was also investigated. Like much of
the other outcomes, there is not exactly a perfect solution because there is a lot of
uncertainty and risk involved with using these methods. Leaders must understand the
risks to better inform their decisions on how to apply these methods. The Massachusetts
Institute of Technology Lincoln Laboratory (MITLL) Tool was also used to identify how
the planning of different electrical projects are affected by differing outage data.
Specifically, Type II Errors from a 15-minute and 1-day data collection intervals
influenced over confident decisions. With better meter data, more outages can be found
and better designs can be created by looking at the energy usage trends. These positive
effects could compound because designing systems for proper conditions reduce the

chances of overloading electrical systems (leading to more outages).
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5.2 Significance of Research

Significant improvements to electrical distribution repair planning and
programming could be seen by incorporating meter data in addition to linear
segmentation and geographic information system (GIS) data. The impacts to funding a
particular project over another could be better realized with the addition of outage and
energy usage information. Asset management companies in the private sector do similar
surveys and studies for public utilities. By using the systems the Air Force is developing
and already has in place, like the Advanced Meter Reading System (AMRS), better
funding can be provided to installations around the world. Doing so would be a positive
move towards the Air Force priority to cost effectively modernize (Secretary of the Air
Force, 2017).

The Air Force’s advanced meter data collection interval width could be decreased
to accommodate finding smaller outages. The reduction of the interval width will create
even more data to store and transfer, as described by Zhou et al. (Zhou et al., 2016).
These changes could be implemented depending on the ability of the current AMRS
system. Locating more outages will give the Air Force a better understanding of the
hazards that could be unnoticed. Finding and reducing outages will create a more
resilient and reliable grid which is the main focus of the Air Force Energy Flight Plan

(Department of the Air Force, 2017b).
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5.3 Recommendations for Action

It is recommended that The Air Force Civil Engineer Center (AFCEC)
investigates the effectiveness of the AMRS to identify outages and make locating outages
one of their key pillars for justifying advanced meter investments. This research uses the
idea that Last Gasp messages are not being used. With the high error rates of this
research more work need to be done, but the use of Last Gasp messages removes the
requirement of guessing if an outage occurred. Last Gasp messages can give a start time
and meter reconnection can give an end time for the outage. This process could be
automated and integrated within the Air Force’s current AMRS. AFCEC states that a
similar, but less precise, function already exists in the current AMRS. It is accomplished
by highlighting the interval that communication was lost with the meter (possibly from an
outage), but this protocol does not provide an exact timestamp for when the loss of
communication occurred. Regardless, its ability to inform asset management decisions is
not happening systemically throughout the Air Force (Gerdes, 2017).

Finally, if the ARMS is able to effectively locate outages, then its capabilities
should be combine with the Utility System Outage Reporting and Tracking (USORT)
Tool. With AMRS and USORTS working together, a complete picture of the
vulnerabilities in the Air Force’s electrical system can be seen. This data could then be

used to inform IPL decisions.
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5.4 Recommendations for Future Research

Future follow-on research is a must to refine and validate the findings from this
thesis to other geographic areas. Additionally, other outage detection strategies could
also be investigated, like analyzing the maximum difference between sequential intervals
to locate outages (a sudden drop in energy usage). Future research could also be
conducted on other utilities that utilize advanced meters. Another topic could be to
investigate if there is a seasonal dependency of how long the intervals should be. For
example, in summer the intervals could be smaller because there is a higher Heating
Ventilation and Air Conditioning load or in the Fall and Spring the intervals can be wider
to alleviate additional unnecessary data storage and transfer.

Another aspect of this research that could be expanded is looking at multiple
facilities on a single meter. This could be simulated or organic. By looking at trends in
this aggregated energy usage there could be dependencies that exist. These aggregated
meters could work in tandem with single facility meters to give more fidelity that an
outage has occurred.

Another very useful analysis could be an artificial intelligence application to
outage detection with advanced meters. Computerization of when and where outages
were occurring can help the system learn what outages at what locations are being missed
and when they are being correctly identified. This application is advanced and rigorous,

but also become obsolete by using Last Gasp messages.
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Finally, the Microgrid Design Toolkit (MDT) created by Sandia Laboratories is
another useful tool that could also be used in future iterations of this research involved in
energy resilience. The MDT is a software using Monte Carlo simulations to evaluate the
performance of different electrical infrastructure architectures, making it a perfect
candidate for any type of sensitivity analysis. This program is free and available online

through the Department of Energy.
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Appendix 2. Raw R Studio Code

Pecan Street

HHHHHHAHHHMODEL BUILD##HHHHHHIHHIHHHE
#library(readr)
#rawdata <- read_csv("pecan/rawdata.csv", col_names = FALSE)
colnames(rawdata)=(c("X1","X2","X3"))
dataidlist=unlist(unique(rawdata[,3]))
numdataid=length(dataidlist) #number of distinct data IDs=88
possible_int_leng min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440)
possible_combo_int=c(1,2,4,13,26,52)
crit_val=array(dim=c(6,36,numdataid))
store_x=array(dim=c(6,36,numdataid))
pos_pos=array(dim=c(6,36,numdataid))
neg_ neg=array(dim=c(6,36,numdataid))
typelerror=array(dim=c(6,36,numdataid))
type2error=array(dim=c(6,36,numdataid))
outlengstr=array(dim=c(numdataid,100000))#I dont know how many contiguous outages there will be, but i know it is highly unlikely
that there will be over 100,000
day=array(dim=c(numdataid,2))
duplicates=numeric(numdataid)
minperyear=60%24*365
w=1##HH#H#TESTS
{start_time=Sys.time()
for(w in 1:numdataid){#for each DatalD
run=subset(rawdata,rawdata$ X3==as.numeric(dataidlist{w])) #run is created for the individual DatalD
run$X2[which(run$ X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an
outage or a meter malfunction
if(sum(duplicated(run$X1))>0){duplicates[w]=1#notifies if there is any duplicates in the specific DatalD. hypothetically this is a
malfunction and would need to be fixed
run=run[!duplicated(run$X1),] }#if there was a duplicate, the 1st value is assumped to be correct and everything else is an error.
run=run[!is.na(run$X1),]#removes the rows that do not have a valid date
run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order
xleng=length(run$X1)

{i=1
=1
while (i<2){chk=as.numeric(run(j,1])
if (chk%%(60*60%24)==60) {
if (is.na(runfj,2])run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining
of data set is not clean
else{i=i+1}}
else {j=j+1} }#this function finds the first position in the data to being clean_date
k=j
clean_date=as.numeric(unlist(run[j:xleng,1]))
}##this function creates dates as intergers and begins with the first full day of data that is not an NA or 0

xleng=length(clean_date)#new length with trimmed times
totalmin=1+(clean_date[xleng]-clean_date[1])/60
day[w,1]=as.Date(clean_date[1], origin="1970-01-01")
day[w,2]=as.Date(clean_date[xleng], origin="1970-01-01")

{i=1
=1
clean=numeric(totalmin)
while (i<totalmin+1){
if(clean_date[1]+60*(i-1)-clean_date[j]==0){
if(is.na(runfk,2])){clean[i]=0}
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else{clean[i]=(run[k,2])}
k=k+1
=i+l
=t
else{clean[i]=0
i=itl})
}#ills gaps in data with 0 energy usage
xleng=length(clean)#new length with filled in missing data
clean=unlist(clean)

{i=1#where are the 0s?
=1
k=1
zeros=sort(which(clean==0)) #tells me which rows are 0!
if(length(zeros)>1){
for (i in 1:(length(zeros)-1)){
if (zeros[i]-zeros[i+1]==-1){j=j+1}
else {outlengstr[w,k]=j
k=k+1
=13
outlengstr[w,k]=j} }#last one!
else{if(length(zeros==1)){outlengstr{w,1]=1}
else{outlengstr[w,1]=0} }
}#inds outage lengths and and frequency

q=36####TEST

for (q in 1:36){ #for each interval (36 different intervals)
int_leng min=possible_int leng min[q]#tested interval in "q-th" minutes
int_day=(60*24)/int_leng min #how many intervals in a single day
x=floor(xleng/int_leng_min) #combination rule....new length rounded down
zeros_new=unique(ceiling(zeros/int_leng_min))
zeros_newl=zeros_new

{run_new=(sapply(1:x,function(i){
o=(sapply(1:int_leng_min,function(j){
(clean[int_leng_min*i-int_leng_min+j])}))
sum(o[ l:int_leng min])

)]

run_newl=run_new
p=1####TEST
if(length(zeros _new)!=0){
run_new=run_newl
{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24)
j=((91-floor(ddays%%(365/4))+tloor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day.
chkl=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchkl=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int leng
min))-j+1}
else{if ((zeros[1]/int_leng min)<j){zchkl=numeric()}
else{zchk1=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
}starts data within a day of the the middle of Jan, Apr, Jul, Oct

{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24)
j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365%4)))) *int_day)+1 #multipule
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day.
chk2=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-j+1}
else{if ((zeros[1])/int_leng_min)<j){zchk2=numeric()}
else{zchk2=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
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#cuts out any zeros that occur before j and re-indexs the values
}#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different
categories
zscore=array(dim=c(length(zeros_new),6))
chk=array(dim=c(length(zeros_new),6))
for(p in 1:6){
wk=possible_combo_int[p] #combine the data for "p" weeks

{if(wk==13){run_new=chk1
x=length(run_new)
zeros_new=zchk1}
if(wk==26){run_new=chk2
x=length(run_new)
zeros_new=zchk2}
if(wk==52){run_new=run_newl
x=length(run_newl)
zeros_new=zeros_new1 } }#alters the data if looking at seasonal or bi-yearly combinations

combo_yr=ifelse(x>365%int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364
days/yr for calculations)

intmean=numeric(combo_yr)

intsd=numeric(combo_yr)

#must use 364 to keep whole weeks, starting and ending on the same day of the week! The specific month or paticular "number
date" are overlooked

#teach year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the
next! and so on...

groups=numeric()

x_combo=floor(x/int_day)

x=x_combo*int_day

if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[ | :(min(which(zeros_new>x))-1)]} }#trim
"zeros_new" as well, if there are zeros in the trim, zscore fails

n=ceiling(x/(364*int_day))

run_new=run_new[1:(x)]

for(i in 1:combo_yr) {groups|[i]=list(sapply(1l:n,function(y) {run_new[int day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data

for (iin l:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i]}>=0))])}

for (iin l:combo_yr) {intmean[iJ=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))]) }#for a given data interval (q), a mean
and SD are created by combining using "p"th weeks

if(length(zeros_new)!=0){

for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&S5 for run_new could be shorter....

j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index

zscore([1,p]=(run_new[k]-intmean(j])/intsd[j] #use the "new_run" that contains a 0, find its z score away from the mean.

chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the Os at any interval

}#finds the standardized distance way from the mean (defined as zscores) of all the outages

crit_val[p,q,w]=zscore[order(-zscore[which(is.na(zscore[,p])!=1),p]),p][ceiling(. | *length(which(is.na(zscore[,p])!=1))) ]##90%
(or if <10 zeros... ((z-1)/z)% (less than 90%)) of the zeros are at or below this zscore

crit_val[p,q,w]=ifelse(crit_val[p,q,w]>0,0,crit_val[p,q,w])

#consider makeing crit value neg or 0... reduces type 2 Os but increases type 1

#crit_val says everything at or below this value is an outage....additional care must be taken if NAs exist in the zscore array
when calculating errors and crit val because it messes with the sorting vectors.

store_x[p,q,w]=x

typelerror[p,q,w]=length(which(zscore[,p]>crit_val[p,q,w]))-sum(chk[which(zscore[,p]>crit_val[p,q,w]),p]) #outputs the
number of zeros that are larger than the "critical value", because "zscore" only contains outages,

#those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then
the outage can be ID'd by simply searching for Os.

intsdopr=rep(intsd,ceiling(x/combo_yr))[ 1:x]#operator to make calculations quicker

intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker

type2error|p,q,w]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=crit_val[p,q,w]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=crit_val[p,q,w]),zeros_new)))

neg_neg[p,q,w]=length(which(is.na(zscore[,p])!=1))-typelerror[p,q,w]#any outage with a zscore equal to or less than the
critical value is correctly ID'd as an outage (true reject the null)
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pos_pos[p,q,w]=x-neg_neg[p,q,w]-typelerror[p,q,w]-type2error[p,q,w]#all other values are correctly ID'd no outage
#type2error finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating
Zeros)
HIF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would
be an error?
}#end of P loop
t#end of STD DEV VS. OUTAGE

} Htend of W & Q loop
{out_num=numeric(numdataid)

out_median=numeric(numdataid)

out_mean=numeric(numdataid)

for (i in 1:numdataid)out num[i]=length(outlengstr{i,which(outlengstr[i,]>0)])

for (i in 1:numdataid)out median[i]=median(outlengstr[i,which(outlengstr[i,]>0)])

for (i in 1:numdataid)out mean[i]=mean(outlengstr[i,which(outlengstr[i,]>0)])

out_mean_total=mean(outlengstr[which(outlengstr>0)])

out_median_total=median(outlengstr[which(outlengstr>0)])
}#mean and median information about outages
{test_crit_val=array(dim=c(6,36))

for (iin 1:6){for (j in 1:36){

test_crit_val[i,jJ=sort(crit_val[i,j,])[ceiling(numdataid*.9)]
I3

}#erit_val key metrics and error information

{write.table(day, file = "C:/Users/Jared/Google Drive/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)

write.table(test_crit_val, file = "C:/Users/Jared/Google Drive/test_crit val.txt", sep = "\t", row.names = FALSE, col.names =
FALSE)

#write.table(day, file = "pecan/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code

#write.table(test_crit_val, file = "pecan/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code

}#print the tables that will be needed in validation and aggregation processes

time1=Sys.time()-start_time
timel }#end of model building code

write.table(testdata, file = "C:/Users/Jared/Google Drive/testdata.txt", sep = "\t", row.names = FALSE, col.names = FALSE)

#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))#
Specify axis options within plot()

{
{jpeg(filename = paste("crit_val.jpg"),width = 7.5, height = 7.5, units ="in",res = 750)
plot(c(1,36),c(-1.6,-.8),type="n",main="Critical Values by Combination and Interval", xlab="Interval (minutes)", ylab="Critical
Value",xaxt="n")
axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))
grid(NULL,NULL, lwd = 2)
lines((1:(36)),test_crit_val[(1:36)*6-5], col="blue", Ity=1, lwd=4, pch=19)
lines((1:(36)),test_crit_val[(1:36)*6-4], col="red", lty=1, Iwd=4, pch=19)
lines((1:(36)),test_crit_val[(1:36)*6-3], col="green", lty=1, Iwd=4, pch=19)
lines((1:(36)),test_crit_val[(1:36)*6-2], col="black", lty=1, lwd=4, pch=19)
lines((1:(36)),test_crit_val[(1:36)*6-1], col="orange", lty=1, Iwd=4, pch=19)
lines((1:(36)),test_crit_val[(1:36)*6], col="yellow", lty=1, lwd=4, pch=19)
points((1:(36)),test_crit_val[(1:36)*6-5], col="blue", pch=19, cex=1)
points((1:(36)),test_crit_val[(1:36)*6-4], col="red", pch=19, cex=1)
points((1:(36)),test_crit_val[(1:36)*6-3], col="green", pch=19, cex=1)
points((1:(36)),test_crit_val[(1:36)*6-2], col="black", pch=19, cex=1)
points((1:(36)),test_crit_val[(1:36)*6-1], col="orange", pch=19, cex=1)
points((1:(36)),test_crit_val[(1:36)*6], col="yellow", pch=19, cex=1)
legend(1,-1.2,c¢("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=1,y.intersp=1,title=("SD/Mean Combinations"),
Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot
dev.off() } #shows the specified 10 percentile "Critical Values"
}#end of graphics code
ANV ALID ATEMHHHHHHHAFHE
#requires "test_crit_val" from Model Building.R
library(readr)
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testdata <- read_csv("pecan/testdata.txt", col_names = FALSE)#import the test data... format="%Y-%m-%d %H:%M:%S-%z'

colnames(testdata)=(c("X1","X2","X3"))
{dataidlist_test=unlist(unique(testdata[,3]))
numdataid=length(dataidlist_test)

possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72

0,1440)
possible_combo_int=c(1,2,4,13,26,52)
store_x_test=array(dim=c(6,36,numdataid))
pos_pos_test=array(dim=c(6,36,numdataid))
neg_neg_test=array(dim=c(6,36,numdataid))
typellerror_test=array(dim=c(6,36,numdataid))
typelerror_test=array(dim=c(6,36,numdataid))
outlengstr_test=array(dim=c(numdataid,1000000))
day_test=array(dim=c(numdataid,2))
duplicates_test=numeric(numdataid)
minperyear=60%24*365 } #creates the variables

w=1##HH#H#TESTS

{start_time=Sys.time()
for(w in 1:numdataid){#for each DatalD

run=subset(testdata,testdata$ X3==as.numeric(dataidlist_test[w])) #run is created for the individual DatalD

run$X2[which(run$ X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an

outage or a meter malfunction

if(sum(duplicated(as.numeric(run$X1)))>0) {duplicates_test[w]=1#notifies if there is any duplicates in the specific DatalD.

hypothetically this is a malfunction and would need to be fixed

run=run[!duplicated(run$X1),] }#if there was a duplicate the 1st value is assumped to be correct and everything else is an error.

run=run[!is.na(run$X1),]#removes the rows that do not have a valid date
run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order

xleng=length(run$X1)

{i=1

=1

while (i<2){chk=as.numeric(run(j,1])
if (chk%%(60*60%24)==60){

if (is.na(runfj,2])run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining

of data set is not clean
else{i=i+1}}

else {j=j+1} }#this function finds the first position in the data to being clean_date

k=j
clean_date=as.numeric(unlist(run[j:xleng,1]))

}##this function creates dates as intergers and begins with the first full day of data that is not an NA or 0

xleng=length(clean_date)#new length with trimmed times
totalmin=1+(clean_date[xleng]-clean_date[1])/60

day test[w,1]=as.Date(clean_date[1], origin="1970-01-01")
day_test[w,2]=as.Date(clean_date[xleng], origin="1970-01-01")

{i=1
=1
clean=numeric(totalmin)
while (i<totalmin+1){
if(clean_date[1]+60*(i-1)-clean_date[j]==0){
if(is.na(runfk,2])){clean[i]=0}
else{clean[i]=(run[k,2])}
k=k+1
=i+l
J=H
else{clean[i]=0
=it}
}#fills gaps in data with O energy usage
xleng=length(clean)#new length with filled in missing data
clean=unlist(clean)

{i=1#where are the 0s?
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=1
k=1
zeros=sort(which(clean==0)) #tells me which rows are 0!
if(length(zeros)>1){
for (i in 1:(length(zeros)-1)){
if (zeros[i]-zeros[i+1]==-1) {j=j+1}
else{outlengstr test[w,k]=j
k=k+1
1
outlengstr_test[w,k]=j} }#last one!
else{if(length(zeros==1)){outlengstr_test[w,1]=1}
else{outlengstr test[w,1]=0}}
}#tinds outage lengths and and frequency

q=1###4#TEST

for (qin 1:36){ #for each interval (36 different intervals)
int_leng_min=possible int leng min[q]#tested interval in "g-th" minutes
int_day=(60*24)/int_leng_min #how many intervals in a single day
x=floor(xleng/int_leng min) #combination rule....new length rounded down
zeros_new=unique(ceiling(zeros/int_leng_min))
zeros_new1=zeros_new

{run_new=(sapply(1:x,function(i){
o=(sapply(1:int_leng_min,function(j){
(clean[int_leng min*i-int leng min+j])}))
sum(o[ 1:int_leng min])

),

run_newl=run_new
p=1#HH#TEST
if(length(zeros_new)!=0){
run_new=run_newl
{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day.
chkl=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchk1=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-j+1}
else{if ((zeros[1])/int_leng min)<j){zchkl=numeric()}
else{zchkl=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
}#starts data within a day of the the middle of Jan, Apr, Jul, Oct

{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
7=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day.
chk2=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-+1}
else{if ((zeros[1]/int_leng min)<j){zchk2=numeric()}
else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1} }#in case there is only one "0" and that zero is below the new start
#fcuts out any zeros that occur before j and re-indexs the values
}#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different
categories
zscore=array(dim=c(length(zeros_new),6))
chk=array(dim=c(length(zeros_new),6))
for(p in 1:6){
wk=possible_combo_int[p] #combine the data for "p" weeks

{if(wk==13){run_new=chk1
x=length(run_new)
zeros_new=zchkl}
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if(wk==26){run_new=chk2

x=length(run_new)

zeros_new=zchk2}

if(wk==52){run_new=run_newl

x=length(run_newl)

zeros_new=zeros_new1 } }#alters the data if looking at seasonal or bi-yearly combinations

combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364
days/yr for calculations)

intmean=numeric(combo_yr)

intsd=numeric(combo_yr)

#must use 364 to keep whole weeks, starting and ending on the same day of the week! The specific month or paticular "number
date" are overlooked

#teach year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the
next! and so on...

groups=numeric()

x_combo=floor(x/int_day)

x=x_combo*int_day

if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[ | :(min(which(zeros_new>x))-1)]} }#trim
"zeros_new" as well, if there are zeros in the trim, zscore fails

n=ceiling(x/(364*int_day))

run_new=run_new[1:(x)]

for(i in 1:combo_yr) {groups[i]=list(sapply(l:n,function(y) {run_new[int_day*sequence(7*wk)-int_day-+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data

for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i]}>=0))])}

for (i in l:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean
and SD are created by combining using "p"th weeks

if(length(zeros_new)!=0){
for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&S5 for run_new could be shorter....
j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index
zscore[i,p]=(run_new[k]-intmean[j])/intsd[j] #use the "new_run" that contains a 0, find its z score away from the mean.
chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the Os at any interval
}#finds the standardized distance way from the mean (defined as zscores) of all the outages
store_x_test[p,q,w]=x
typellerror_test[p,q,w]=length(which(zscore[,p]>test_crit_val[p,q]))-sum(chk[which(zscore[,p]>test_crit_val[p,q]).p])
#outputs the number of zeros that are larger than the "critical value", because "zscore" only contains outages,
#those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then
the outage can be ID'd by simply searching for 0Os.
intsdopr=rep(intsd,ceiling(x/combo_yr))[ 1:x]#operator to make calculations quicker
intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
typelerror_test[p,q,w]=ifelse(length(setdiff{which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q]),zeros_new)))
neg_neg_test[p,q,w]=length(which(is.na(zscore[,p])!=1))-typellerror_test[p,q,w]#any outage with a zscore equal to or less than
the critical value is correctly ID'd as an outage (true reject the null)
pos_pos_test[p,q,w]=x-neg_neg_test[p,q,w]-typellerror_test[p,q,w]-typelerror_test[p,q,w]#all other values are correctly ID'd
no outage
#typelerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating
Zeros)
HIF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would
be an error?
}#end of P loop
#end of STD DEV VS. OUTAGE
} }#tend of W & Q loop
{out_num_test=numeric(numdataid)
out_median_test=numeric(numdataid)
out_mean_test=numeric(numdataid)
for (i in 1:numdataid)out num_test[i]=length(outlengstr test[i,which(outlengstr_test[i,]>0)])
for (i in 1:numdataid)out median_test[i]=median(outlengstr_test[i,which(outlengstr test[i,]>0)])
for (i in 1:numdataid)out _mean_test[i]=mean(outlengstr_test[i,which(outlengstr_test[i,]>0)])
out_mean_total test=mean(outlengstr_test[which(outlengstr test>0)])
out_median_total test=median(outlengstr test[which(outlengstr test>0)])
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time1=Sys.time()-start_time
timel }#end of model validiation

#PREP FOR MATLAB/MITLL
mean((typelerror_test[6,11,])/store_x_test[6,11,])#5.04%
mean((typelerror_test[6,1,])/store_x_test[6,1,])#3.3%
mean((typellerror_test[6,11,])/store_x_test[6,11,])#.01%
mean((typellerror_test[6,1,])/store_x_test[6,1,])#0%

(sum(typelerror_test[6,11,])/sum(neg_neg_test[6,11,]+typelerror_test[6,11,]))#41.2%
(sum(typelerror_test[6,1,])/sum(neg_neg_test[6,1,]+typelerror_test[6,1,]))#33.3%
(sum(typellerror_test[6,11,])/sum(neg neg_test[6,11,]+typelerror test[6,11,]))#.1%
(sum(typellerror_test[6,1,])/sum(neg_neg_test[6,1,]+typelerror_test[6,1,]))#0.0%
(sum(typellerror_test[6,11,])/sum(neg neg_test[6,11,]+typellerror_test[6,11,]))#.2%
(sum(typellerror_test[6,1,])/sum(neg neg_test[6,1,]+typellerror test[6,1,]))#0.0%

#if typellerrors are fix before anyone knows... we will never know they happend
#what is correctly ID'd? ID outages higher isnt always the best thing....missed outages between 15 and and 1 min are not substantial

par(mfrow=c(1,1)) #reset to 1 by 1 graph
#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))#
Specify axis options within plot()

{plot(c(1,36),c(0,12),type="n",main="Validation Type II Errors as % of Known Outages", xlab="Interval (minutes)", ylab="Percent
Errors (%)",xaxt="n")

axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))

grid(NULL,NULL, Iwd = 2)

title(" \"X% of actual outages that were not identified\" ",line = .5,col.main="dark blue",cex.main=.9)

lines((1:(36)),100*rowSums(typellerror_test[1,,],na.rm=TRUE)/(rowSums(typellerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[1,,],na.rm=TRUE)), col="blue", Ity=1, Iwd=4, pch=19)
lines((1:(36)),100*rowSums(typellerror_test[2,,],na.rm=TRUE)/(rowSums(typellerror_test[2,,],na.rm=TRUE)+rowSums(neg neg_tes
t[2,,],na.rm=TRUE)), col="red", Ity=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typellerror_test[3,,],na.rm=TRUE)/(rowSums(typellerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[3,,],na.rm=TRUE)), col="green", Ity=1, Iwd=4, pch=19)
lines((1:(36)),100*rowSums(typellerror_test[4,,],na.rm=TRUE)/(rowSums(typellerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[4,,],na.rm=TRUE)), col="black", lty=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typellerror_test[5,,],na.rm=TRUE)/(rowSums(typellerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[5,,],na.rm=TRUE)), col="orange", lty=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typellerror_test[6,,],na.rm=TRUE)/(rowSums(typellerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[6,,],na.rm=TRUE)), col="yellow", lty=1, Iwd=4, pch=19)
points((1:(36)),100*rowSums(typellerror_test[1,,],na.rm=TRUE)/(rowSums(typellerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_t
est[1,,],na.rm=TRUE)), col="blue", pch=19, cex=1)
points((1:(36)),100*rowSums(typellerror_test[2,,],na.rm=TRUE)/(rowSums(typellerror_test[2,,],na.rm=TRUE)+rowSums(neg _neg_t
est[2,,],na.rm=TRUE)), col="red", pch=19, cex=1)
points((1:(36)),100*rowSums(typellerror_test[3,,],na.rm=TRUE)/(rowSums(typellerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_t
est[3,,],na.rm=TRUE)), col="green", pch=19, cex=1)
points((1:(36)),100*rowSums(typellerror_test[4,,],na.rm=TRUE)/(rowSums(typellerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_t
est[4,,],na.rm=TRUE)), col="black", pch=19, cex=1)
points((1:(36)),100*rowSums(typellerror_test[5,,],na.rm=TRUE)/(rowSums(typellerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_t
est[5,,],na.rm=TRUE)), col="orange", pch=19, cex=1)
points((1:(36)),100*rowSums(typellerror_test[6,,],na.rm=TRUE)/(rowSums(typellerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_t
est[6,,],na.rm=TRUE)), col="yellow", pch=19, cex=1)

legend(0,11.5,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),

Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot

shows the Type Il errors as a percentage of the known outages

HHH#NOT USED
{plot(c(1,36),c(0,15),type="n",main="Validation Type I Errors as % of Total Sample Space", xlab="Interval (minutes)",
ylab="Percent Errors (%)",xaxt="n")
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axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))

grid(NULL,NULL, Iwd = 2)

title(" \"X% of the total sample space was incorrectly identified as an outage\" ",line = .5,col. main="dark blue",cex.main=.9)

lines((1:(36)),100*rowSums(typelerror_test[1,,],na.rm=TRUE)/rowSums(store_x_test[1,,],na.rm=TRUE), col="blue", Ity=1, lwd=4,
pch=19)

lines((1:(36)),100*rowSums(typelerror_test[2,,],na.rm=TRUE)/rowSums(store_x_test[2,,],na.rm=TRUE), col="red", Ity=1, lwd=4,
pch=19)

lines((1:(36)),100*rowSums(typelerror_test[3,,],na.rm=TRUE)/rowSums(store_x_test[3,,],na.rm=TRUE), col="green", lty=1,
Iwd=4, pch=19)

lines((1:(36)),100*rowSums(typelerror_test[4,,],na.rm=TRUE)/rowSums(store_x_test[4,,],na.rm=TRUE), col="black", lty=1, lwd=4,
pch=19)

lines((1:(36)),100*rowSums(typelerror_test[5,,],na.rm=TRUE)/rowSums(store_x_test[5,,],na.rm=TRUE), col="orange", lty=1,
Iwd=4, pch=19)

lines((1:(36)),100*rowSums(typelerror_test[6,,],na.rm=TRUE)/rowSums(store_x_test[6,,],na.rm=TRUE), col="yellow", lty=1,
Iwd=4, pch=19)

points((1:(36)),100*rowSums(typelerror_test[1,,],na.rm=TRUE)/rowSums(store_x_test[1,,],na.rm=TRUE), col="blue", pch=19,
cex=1)

points((1:(36)),100*rowSums(typelerror_test[2,,],na.rm=TRUE)/rowSums(store_x_test[2,,],na.rm=TRUE), col="red", pch=19,
cex=1)

points((1:(36)),100*rowSums(typelerror_test[3,,],na.rm=TRUE)/rowSums(store_x_test[3,,],na.rm=TRUE), col="green", pch=19,
cex=1)

points((1:(36)),100*rowSums(typelerror_test[4,,],na.rm=TRUE)/rowSums(store_x_test[4,,],na.rm=TRUE), col="black", pch=19,
cex=1)

points((1:(36)),100*rowSums(typelerror_test[5,,],na.rm=TRUE)/rowSums(store_x_test[5,,],na.rm=TRUE), col="orange", pch=19,
cex=1)

points((1:(36)),100*rowSums(typelerror_test[6,,],na.rm=TRUE)/rowSums(store_x_test[6,,],na.rm=TRUE), col="yellow", pch=19,
cex=1)

legend(1,15,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),

Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot

}#shows the Type I errors as a percentage of the total sample space

{plot(c(1,36),c(0,80),type="n",main="Validation Type I Errors as % of All Identified Outages", xlab="Interval (minutes)",
ylab="Percent Errors (%)",xaxt="n")

axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))

grid(NULL,NULL, lwd = 2)

title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .5,col.main="dark blue",cex.main=.9)
lines((1:(36)),100*rowSums(typelerror_test[1,,],na.rm=TRUE)/(rowSums(typelerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_test[
1,,],na.rm=TRUE)), col="blue", Ity=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typelerror_test[2,,],na.rm=TRUE)/(rowSums(typelerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_test[
2,,],na.rm=TRUE)), col="red", Ity=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typelerror_test[3,,],na.rm=TRUE)/(rowSums(typelerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_test[
3,,],na.rm=TRUE)), col="green", Ity=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typelerror_test[4,,],na.rm=TRUE)/(rowSums(typelerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_test[
4,,],na.rm=TRUE)), col="black", lty=1, Iwd=4, pch=19)
lines((1:(36)),100*rowSums(typelerror_test[5,,],na.rm=TRUE)/(rowSums(typelerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_test[
5,,],na.rm=TRUE)), col="orange", lty=1, lwd=4, pch=19)
lines((1:(36)),100*rowSums(typelerror_test[6,,],na.rm=TRUE)/(rowSums(typelerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_test[
6,,],na.rm=TRUE)), col="yellow", Ity=1, lwd=4, pch=19)
points((1:(36)),100*rowSums(typelerror_test[1,,],na.rm=TRUE)/(rowSums(typelerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[1,,],na.rm=TRUE)), col="blue", pch=19, cex=1)
points((1:(36)),100*rowSums(typelerror_test[2,,],na.rm=TRUE)/(rowSums(typelerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[2,,],na.rm=TRUE)), col="red", pch=19, cex=1)
points((1:(36)),100*rowSums(typelerror_test[3,,],na.rm=TRUE)/(rowSums(typelerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[3,,],na.rm=TRUE)), col="green", pch=19, cex=1)
points((1:(36)),100*rowSums(typelerror_test[4,,],na.rm=TRUE)/(rowSums(typelerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[4,,],na.rm=TRUE)), col="black", pch=19, cex=1)
points((1:(36)),100*rowSums(typelerror_test[5,,],na.rm=TRUE)/(rowSums(typelerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[5,,],na.rm=TRUE)), col="orange", pch=19, cex=1)
points((1:(36)),100*rowSums(typelerror_test[6,,],na.rm=TRUE)/(rowSums(typelerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[6,,],na.rm=TRUE)), col="yellow", pch=19, cex=1)
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legend(2.5,30,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),
Ity=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") )#imports a legend for the plot
#shows the Type I errors as a percentage of all identified outages (good negatives and bad negatives)

{plot(c(1,36),c(75,100),type="n",main="Validation \"Good Match\" as % of Total Sample Space", xlab="Interval (minutes)",
ylab="Percent Errors (%)",xaxt="n")
axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))
grid(NULL,NULL, lwd = 2)
title(" \"X% of the total sample space that contains no errors (\"Good Match\") ",line = .5,col.main="dark blue",cex.main=.9)
chk=c("blue","red","green","black","orange","yellow")
for (iin
1:6){lines((1:(36)),100*(rowSums(neg_neg_test[i,,],na.r m=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_tes
t[i,,],na.rm=TRUE)), col=chk[i], lty=1, lwd=4, pch=19)

points((1:(36)),100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,
],na.rm=TRUE)), col=chk[i], pch=19, cex=1)}
legend(22,82,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),
Ity=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") )#imports a legend for the plot
}#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd

#H###H#NOT USED
{plot(c(1,36),c(0,15),type="n",main="Validation Total Errors as % of Total Sample Space", xlab="Interval (minutes)", ylab="Percent
Errors (%)",xaxt="n")

axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))

grid(NULL,NULL, Iwd = 2)

title(" \"X% of the total sample space that contains errors ",line = .5,col.main="dark blue",cex.main=.9)

chk=c("blue","red","green","black","orange","yellow")

for (i in 1:6){lines((1:(36)),100-
(100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,],na.rm=TRUE
))), col=chk[i], lty=1, Iwd=4, pch=19)

points((1:(36)),100-

(100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,],na.rm=TRUE
))), col=chk[i], pch=19, cex=1)}

legend(25,15,¢("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),

Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot

}#shows how good at ID'ing the outages as a whole by compairing Errors

HtHH#HHHHAHbar charts
{par(mfrow=c(3,2),xpd=F,mar=c(5,4,4,4))
for(i in 1:6) {chk=order(-
(colSums(typellerror_test[i,,],na.rm=TRUE)+colSums(typelerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE))
chkl=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")
barplot(100*matrix(c(colSums(typellerror_test[i,,],na.rm=TRUE)[chk],colSums(typelerror_test[i,,],na.rm=TRUE)[chk])/(colSums(sto
re_x_test[i,,],na.rm=TRUE)[chk]),nrow=2, byrow=TRUE), col=c("darkblue","red"),

ylim=c(0,50),space=0, axes=TRUE, main=paste("Pareto Chart of Errors by DatalD as % of Total Values \nCombine
every",chkl[i]), xlab="Data ID index", ylab="Percent (%)", legend=c("Type II Error"," Type I Error"),args.legend=list(bty =
"n",cex=.9))
grid()
axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2)
axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2]," "),las=2,tck=-.05)} }#shows where and how big the errors are by percentage for
all combinations

{par(mfrow=c(3,2))

for(i in 1:6){chk=order(-
(colSums(typellerror_test[i,,],na.rm=TRUE)+colSums(typelerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE))
chkl=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")
barplot(out_mean_test[chk]/60, col=c("red"), ylim=c(0,800),space=0, axes=TRUE, main=paste("Mean Outage Length for Pareto
Chart of Errors \nby DatalD (", chk1[i],")"),
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xlab="Data ID index", ylab="Mean (hours)", legend="Mean Outage Length",args.legend=list(x=22, y=800,bty = "n",cex=.9))
grid()
axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2)
axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2]," "),las=2,tck=-.05)} }#shows the mean outage length in the order found using total
errors by percentage
#COMBINE TO A SINGLE PLOT 2 wide by 3 deep

{par(mfrow=c(3,2))

for(i in 1:6) {chk=order(-
(colSums(typellerror_test[i,,],na.rm=TRUE)+colSums(typelerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE))

chkl=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")

barplot((day_test[chk,2]-day _test[chk,1])/(60*24*60*365), col=c("green"), ylim=c(0,(2500/365)),space=0, axes=TRUE,
main=paste("Years of Data for Pareto Chart of Errors \nby DatalD (", chk1[i],")"),

xlab="Data ID index", ylab="Length (years)")

grid()

axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2)

axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2]," "),las=2,tck=-.05)} }#shows the mean outage length in the order found using
total errors by percentage
#COMBINE TO A SINGLE PLOT 2 wide by 3 deep

{numdataid=22
par(mfrow=c(1,1))
chk1=numeric(numdataid)
for(i in 1:numdataid)
chk1[i]=(sum(typellerror_test[,,i],na.rm=TRUE)+sum(typelerror_test[,,i],na.rm=TRUE))/sum(store x_test[,,i],na.rm=TRUE)
chk=order(-chk1)
chkl=chkl1[chk]
barplot(100*chkl1, col=c("red"),ylim=c(0,25),space=0, axes=TRUE, main=paste("Pareto Chart of Total Errors by DatalD as % of
Total Values for All Combinations"),
xlab="Data ID index", ylab="Percent (%)", legend=c("Total (Type I & II) Error"))
grid()
axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2)
axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2]," "),las=2,tck=-.05)}

Ellsworth Air Force Base

HHHHHHHAHAHAY ALID ATE#####H#HH
#requires "test_crit_val" from critval _sensitivity.R
#library(readr)
#EAFBrawdata <- read_delim("pecan/EAFBrawdata.txt","\t", escape_double = FALSE, col_types = cols(DATE =
col_datetime(format = "%m/%d/%Y")), trim_ws = TRUE)#import the test data... format= %Y-%m-%d
colnames(EAFBrawdata)=(c("X1","X2","X3"))#data is in daily intervals already!!!
{dataidlist EAFB=unlist(unique(EAFBrawdata[,3]))

numdataid=length(dataidlist EAFB)

possible_combo_int=c(1,2,4,13,26,52)

store_x EAFB=array(dim=c(6,numdataid))

pos_pos_EAFB=array(dim=c(6,numdataid))

neg_neg EAFB=array(dim=c(6,numdataid))

typellerror EAFB=array(dim=c(6,numdataid))

typelerror EAFB=array(dim=c(6,numdataid))

outages EAFB=array(dim=c(6,numdataid))

outlengstr EAFB=array(dim=c(numdataid,200))

outloc EAFB=array(dim=c(numdataid,20000))

day EAFB=array(dim=c(numdataid,2))

duplicates EAFB=numeric(numdataid)

minperyear=60*24*365

q=36 #q is the index for which interval width. EAFB only has dayily readings so only interval 36 (1440 minutes) is used
}#creates the variables
w=12#HHHHTESTS
{start_time=Sys.time()

for(w in 1:numdataid){

run=subset(EAFBrawdata, EAFBrawdata$ X3==as.numeric(dataidlist. EAFB[w])) #run is created for the individual DatalD
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run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an

outage or a meter malfunction

if(sum(duplicated(as.numeric(run$X1)))>0){duplicates EAFB[w]=1#notifies if there is any duplicates in the specific DatalD.

hypothetically this is a malfunction and would need to be fixed

run=run[!duplicated(run$X1),] }#if there was a duplicate the 1st value is assumped to be correct and everything else is an error.

run=run[!is.na(run$X1),]#removes the rows that do not have a valid date

run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order

xleng=length(run$X1)

fi=1

=1

while (i<2){chk=as.numeric(run[j,1])
if (chk%%(60*60*24)=0){

set is not clean

if (is.na(runfj,2])|run[j,2]==0) {j=j+1} #if the first day starts with a 0 or NA, move to the next day because the begining of data

else{i=i+1}}
else {j=j+1} }#this function finds the first position in the data to being clean_date
k=j
clean date=as.numeric(unlist(run[j:xleng,1]))
}##this function creates dates as intergers and begins with the first full day of data that is not an NA or 0

xleng=length(clean_date)#new length with trimmed times
totalday=1+(clean_date[xleng]-clean_date[1])/(60*60*24)

day EAFB[w,1]=as.Date(clean_date[1], origin="1970-01-01")

day EAFB[w,2]=as.Date(clean_date[xleng], origin="1970-01-01")

{i=1
=1
clean=numeric(totalday)
while (i<totalday+1){
if(clean_date[1]+(60*24*60)*(i-1)-clean_date[j]==0){
if(is.na(runfk,2])){clean[i]=0}
else{clean[i]=(run[k,2])}
k=k+1
i=it+l
J=H
else{clean[i]=0
i=it+1}}
}tfills gaps in data with 0 energy usage

xleng=length(clean)#new length with filled in missing data
clean=unlist(clean)

#dates 2015-03-09 and 03-10 are days with missing data
{i=1#where are the 0s?
=1
k=1
zeros=sort(which(clean==0)) #tells me which rows are 0!
if(length(zeros)>1){
for (i in 1:(length(zeros)-1)){
if (zeros[i]-zeros[i+1]==-1){j=j+1}
else{outlengstr EAFB[w,k]=j
k=k+1
=13
outlengstr EAFB[w.k]=j} }#last one!
else{if(length(zeros==1)){outlengstr EAFB[w,1]=1}
else{outlengstr EAFB[w,1]=0}}
}#finds outage lengths and and frequency
fHtstart collecting dates when outages happen

for (i in 1:length(zeros)) outloc EAFB[w,i]=clean_date[1]+(zeros[i]-1)*60*60*24

#Usually we would change the interval length but 1 day is the maximum interval tested in this research

{int_leng_min=1440#only full day interval
int_day=(60*24)/int_leng min #how many intervals in a single day
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x=xleng

ZEros_New=zeros
zeros_new1=zeros_new
run_new=clean}#full day interval

run_newl=run_new
p=1#HH#TEST
if(length(zeros_new)!=0){
run_new=run_newl
{ddays=(as.numeric(clean_date[1])-1208232000)/(60*60%24) #use of int_day in next line makes this function also usage for daily
energy intervals
j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of
15 April 2008 every 3 months...each year add an additional day...each leap year add an additional day.
chkl=run_new[(j):x]
zchk 1=which(chk1==0)#in case there is only one "0" and that zero is below the new start
}i#starts data within a day of the the middle of Jan, Apr, Jul, Oct

{ddays=(as.numeric(clean_date[1])-1208232000)/(60*60%24)
j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,tloor((365+ddays)/(365*4))))*int_day)+1 #multipule of
15 April 2008 every 6 months...cach year add an additional day...each leap year add an additional day.
chk2=run_new[(j):x]
zchk2=which(chk2==0)#in case there is only one "0" and that zero is below the new start
#cuts out any zeros that occur before j and re-indexs the values
H#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different
categories
zscore=array(dim=c(length(zeros_new),6))
chk=array(dim=c(length(zeros_new),6))
for(p in 1:6){
wk=possible_combo_int[p] #combine the data for "p" weeks

{if(wk==13){run_new=chkl1
x=length(run_new)
zeros_new=zchkl}
if(wk==26){run_new=chk2
x=length(run_new)
zeros_new=zchk2}
if(wk==52){run_new=run_newl
x=length(run_newl)
zeros_new=zeros_new| } }#alters the data if looking at seasonal or bi-yearly combinations

combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364
days/yr for calculations)

intmean=numeric(combo_yr)

intsd=numeric(combo_yr)

#must use 364 to keep whole weeks, starting and ending on the same day of the week! The specific month or paticular "number
date" are overlooked

#each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the
next! and so on...

groups=numeric()

x_combo=floor(x/int_day)

x=x_combo*int_day#trims the energy usage data

if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[ l:(min(which(zeros_new>x))-1)]} }#trim
"zeros_new" as well, if there are zeros in the trim, zscore fails

n=ceiling(x/(364*int_day))

run_new=run_new[ 1:(x)]

for (i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int day*sequence(7*wk)-int_day-+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data

for (iin l:combo_yr) {intsd[i]=sd(unlist(groups[i])[(Which(unlist(groups[i])>=0))])}

for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(wWhich(unlist(groups[i])>=0))])}#for a given data interval (q), a mean
and SD are created by combining using "p"th weeks

if(length(zeros_new)!=0){ #alot of no Os indicated
for (iin l:length(zeros_new)) {k=zeros_new[i] #p=4&S5 for run_new could be shorter....
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j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index
zscore[i,p]=(run_new[k]-intmean[j])/intsd[j] #use the "new_run" that contains a 0, find its z score away from the mean.
chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the Os at any interval
}#tinds the standardized distance way from the mean (defined as zscores) of all the outages
store_x_EAFB[p,w]=x
typellerror EAFB[p,w]=length(which(zscore[,p]>test crit val[p,q,10,2]))-
sum(chk[which(zscore[,p]>test_crit_val[p,q,10,2]),p]) #outputs the number of zeros that are larger than the "critical value", because
"zscore" only contains outages,
#those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then
the outage can be ID'd by simply searching for Os.
intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
typelerror EAFB[p,w]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]),zeros_new)))
neg_neg EAFB[p,w]=length(which(is.na(zscore[,p])!=1))-typellerror EAFB[p,w]#any outage with a zscore equal to or less
than the critical value is correctly ID'd as an outage (true reject the null)
pos_pos_EAFB[p,w]=x-neg_neg EAFB[p,w]-typellerror EAFB[p,w]-typelerror EAFB[p,w]#all other values are correctly
ID'd no outage
#typelerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating
Zeros)
H#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would be
an error?
#THAT is good if there is a 0... but there probably isnt with daily energy usage... I just want to know how many outages the
model thinks happend...
{intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
outages_ EAFB[p,w]=length(which(((run_new-intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]))}#outputs number of outages
according to the numbers found in the Pecan street model building

}#end of P loop

#tend of STD DEV VS. OUTAGE

tend of W loop

{out_ num EAFB=numeric(numdataid)
out_median EAFB=numeric(numdataid)
out_mean_EAFB=numeric(numdataid)
for (i in 1:numdataid)out num EAFB[i]=length(outlengstr EAFB[i,which(outlengstr EAFBJ[i,]>0)])
for (i in 1:numdataid)out median EAFB[i]=median(outlengstr EAFB[i,which(outlengstr EAFBJ[i,]>0)])
for (i in 1:numdataid)out mean EAFB[i]=mean(outlengstr EAFB[i,which(outlengstr EAFBJ[i,]>0)])
out_mean_total EAFB=mean(outlengstr EAFB[which(outlengstr EAFB>0)])
out_median_total EAFB=median(outlengstr EAFB[which(outlengstr EAFB>0)])

time1=Sys.time()-start_time
timel }#end of model validiation

#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))#
Specify axis options within plot()

{chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks")

chk1=numeric(6)

for(i in 1:6)
{chk1[i]=100*sum(typelerror EAFB[i,],na.rm=TRUE)/(sum(typelerror EAFBJi,],na.rm=TRUE)+sum(neg_neg EAFB[i,],na.rm=TR
UE))}

barplot(chk1,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB Type I Errors as % of All Identified Outages",

xlab="Combinations", ylab="Percent Errors (%)", legend=c("Type I Error"))

title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .5,col.main="dark blue",cex.main=.9)

grid()

axis(1,at=(1:6)-.5,labels=chk[1:6])

}#shows where and how big the errors are by percentage for all combinations

###H#H#NOT USED (ITS ALL ZERO!!!)
{chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks")
chk1=numeric(6)
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for(i in 1:6)
{chk1[i]=100*sum(typellerror EAFBJi,],na.rm=TRUE)/(sum(typellerror EAFB[i,],na.rm=TRUE)+sum(neg_neg EAFB([i,],na.rm=T
RUE))}

barplot(chk1,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB Type II Errors as % of All known Outages",

xlab="Combinations", ylab="Percent Errors (%)", legend=c("Type II Error"))

title(" \"X% of actual outages that were not identified\" ",line = .5,col.main="dark blue",cex.main=.9)

grid()

axis(1,at=(1:6)-.5,labels=chk[1:6])

}#THERE is NO Type I ERRORS!!!

{chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks")
chkl=numeric(6)
for(i in 1:6)
{chk1[i]=100*(sum(neg_neg_ EAFB[i,],na.y m=TRUE)+sum(pos_pos EAFB([i,],na.rm=TRUE))/(sum(store_x EAFB[i,],na.rm=TRUE
N}
barplot(chkl,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB \"Good Match\" as % of Total Sample Space",
xlab="Combinations", ylab="Percent Correct (%)")
title(" \"X% of the total sample space that contains no errors (\"Good Match\") ",line = .5,col.main="dark blue",cex.main=.9)
grid()
axis(1,at=(1:6)-.5,labels=chk[1:6])
}#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd

HittHHHHHEbar charts

{chk=sort(outloc EAFB[which(is.na(outloc EAFB)!=1)])

class(chk)=c('POSIXt','POSIXct")

setdiff(1:2951,((chk1/(60*60%24))-14367))#which days didnt have an outage...93 days between May 2009 and May 2017

chkl=sort(outloc_ EAFB[which(is.na(outloc_ EAFB)!=1)])

barplot(table((chk1/(60*60%*24))-14367),xlim = ¢(1,2951),space = 0,main=paste("Outages in a Day"),ylab="Number of
Outages",xlab="Date",axes =TRUE,xaxt="n', ann=FALSE)

axis(1,at=(1:8)*365-200,labels=c("Jan 10","Jan 11","Jan 12","Jan 13","Jan 14","Jan 15","Jan 16","Jan 17"))

}#code for day of outage #because its a day value...daylights savings time affects the output

{chk=order(-
(colSums(typellerror EAFBJ[,],na.rm=TRUE)+colSums(typelerror EAFB[,],na.rm=TRUE))/colSums(store x EAFBJ,],na.rm=TRUE
)

barplot(out_mean EAFB[chk], col=c("red"), ylim=c(0,25),space=0, axes=TRUE, main="Mean Outage Length in Order of Highest
Errors",

xlab="Data ID index", ylab="Mean (days)", legend=c("Mean Outage Length"),args.legend=list(x=35, y=25,bty = "y"))

grid()

axis(1,at=((1:39)*2)-1.5,labels=chk[((1:39)*2)-1],las=2)

axis(1,at=(1:39)*2-.5,labels=paste(chk[(1:39)*2]," "),las=2,tck=-.05)}#shows the mean outage length in the order found using
total errors by percentage

{chk1=numeric(numdataid)

for(i in 1:numdataid)
chk1[i]=(sum(typellerror EAFBJ[,i],na.rm=TRUE)+sum(typelerror EAFB[,i],na.rm=TRUE))/sum(store_x_EAFBJ,i],na.rm=TRUE)

chk=order(-chk1)

chk1=chk1[chk]

barplot(100*chk1, col=c("red"),ylim=c(0,10),space=0, axes=TRUE, main=paste("Pareto Chart of Total Errors by DatalD as % of
Total Values"),

xlab="Data ID index", ylab="Percent (%)", legend=c("Total (Type I & II) Error"))

grid()

axis(1,at=((1:39)*2)-1.5,labels=chk[((1:39)*2)-1],las=2)

axis(1,at=(1:39)*2-.5,labels=paste(chk[(1:39)*2]," "),las=2,tck=-.05)}
}

Pecan Street Ideal Critical Value Sensitivity

A MODEL BUILD#########H###H
#library(readr)

#rawdata <- read_csv("pecan/rawdata.csv", col names = FALSE)
colnames(rawdata)=(c("X1","X2","X3"))
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dataidlist=unlist(unique(rawdata[,3]))
numdataid=length(dataidlist) #number of distinct data [Ds=88

possible_int leng min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440)

possible_combo_int=c(1,2,4,13,26,52)
day=array(dim=c(numdataid,2))
duplicates=numeric(numdataid)
minperyear=60%24*365
percent=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95)
percentl=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95)
crit_val=array(dim=c(6,36,numdataid,length(percent)))

test_crit_val=array(dim=c(6,36,length(percent),length(percentl)))
v=1#HHHTESTS

w=1#HHHHTESTS
{start_time=Sys.time()
for(w in 1:numdataid) {#for each DatalD
run=subset(rawdata,rawdata$ X3==as.numeric(dataidlist{w])) #run is created for the individual DatalD
run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an
outage or a meter malfunction

if(sum(duplicated(run$X1))>0){duplicates[w]=1#notifies if there is any duplicates in the specific DataID. hypothetically this is a
malfunction and would need to be fixed

run=run(!duplicated(run$X1),] }#if there was a duplicate, the 1st value is assumped to be correct and everything else is an error.
run=run[!is.na(run$X1),]#removes the rows that do not have a valid date

run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order
xleng=length(run$X1)

{i=1
=1
while (i<2){chk=as.numeric(run[j,1])
if (chk%%(60*60*24)==60){
if (is.na(run[j,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining
of data set is not clean
else{i=i+1}}
else {j=j+1} }#this function finds the first position in the data to being clean date
k=
clean_date=as.numeric(unlist(run[j:xleng,11]))
}##this function creates dates as intergers and begins with the first full day of data that is not an NA or 0

xleng=length(clean_date)#new length with trimmed times
totalmin=1+(clean_date[xleng]-clean_date[1])/60
day[w,1]=as.Date(clean_date[1], origin="1970-01-01")
day[w,2]=as.Date(clean_date[xleng], origin="1970-01-01")

{i=1
=1
clean=numeric(totalmin)
while (i<totalmin+1){
if(clean_date[ 1]+60*(i-1)-clean_date[j]==0){
if(is.na(runfk,2])){clean[i]=0}
else{clean[i]=(run[k,2])}
k=k+1
i=it+l
=t
else{clean[i]=0
=it}
}#ills gaps in data with 0 energy usage

xleng=length(clean)#new length with filled in missing data
clean=unlist(clean)

{i=1#where are the 0s?

=1

k=1

zeros=sort(which(clean==0)) #tells me which rows are 0!
if(length(zeros)>1){
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for (i in 1:(length(zeros)-1)){
if (zeros[i]-zeros[i+1]==-1) {j=j+1}
else {outlengstr[w,k]=j
k=k+1
1
outlengstr[w,k]=j} }#last one!
else{if(length(zeros==1)){outlengstr{w,1]=1}
else{outlengstr[w,1]=0} }
}#finds outage lengths and and frequency

q=36####TEST

for (q in 1:36){ #for each interval (36 different intervals)
int_leng min=possible int leng min[q]#tested interval in "q-th" minutes
int_day=(60*24)/int_leng_min #how many intervals in a single day
x=floor(xleng/int_leng_min) #combination rule....new length rounded down
zeros_new=unique(ceiling(zeros/int_leng min))
zeros_new1=zeros_new

{run_new=(sapply(1:x,function(i){
o=(sapply(1:int_leng_min,function(j){
(clean[int_leng_min*i-int_leng_min+j])}))
sum(o[ 1:int_leng min])

),

run_newl=run_new
p=1#HH#TEST
if(length(zeros_new)!=0){
run_new=run_newl
{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day.
chkl=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchkl=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-+1}
else{if ((zeros[1]/int_leng min)<j){zchkl=numeric()}
else{zchk1=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
}#starts data within a day of the the middle of Jan, Apr, Jul, Oct

{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day.
chk2=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-j+1}
else{if ((zeros[1])/int_leng_min)<j){zchk2=numeric()}
else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1} }#in case there is only one "0" and that zero is below the new start
#cuts out any zeros that occur before j and re-indexs the values
}#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different
categories
zscore=array(dim=c(length(zeros_new),6))
chk=array(dim=c(length(zeros_new),6))
for(p in 1:6){
wk=possible_combo_int[p] #combine the data for "p" weeks

{if(wk==13){run_new=chk1

x=length(run_new)

zeros_new=zchk1}
if(wk==26){run_new=chk2
x=length(run_new)
zeros_new=zchk2}
if(wk==52){run_new=run_newl
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x=length(run_newl)
zeros_new=zeros_new1 } }#alters the data if looking at seasonal or bi-yearly combinations

combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364
days/yr for calculations)

intmean=numeric(combo_yr)

intsd=numeric(combo_yr)

#must use 364 to keep whole weeks, starting and ending on the same day of the week! The specific month or paticular "number
date" are overlooked

#each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the
next! and so on...

groups=numeric()

x_combo=floor(x/int_day)

x=x_combo*int_day

if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[ | :(min(which(zeros_new>x))-1)]} }#trim
"zeros_new" as well, if there are zeros in the trim, zscore fails

n=ceiling(x/(364*int_day))

run_new=run_new[1:(x)]

for(i in 1:combo_yr) {groups[i]=list(sapply(l:n,function(y) {run_new[int_day*sequence(7*wk)-int_day-+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data

for (iin l:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i]}>=0))])}

for (i in l:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean
and SD are created by combining using "p"th weeks

if(length(zeros_new)!=0){
for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&S5 for run_new could be shorter....
j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index
zscore([i,p]=(run_new[k]-intmean(j])/intsd[j] #use the "new_run" that contains a 0, find its z score away from the mean.
chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the Os at any interval
}#finds the standardized distance way from the mean (defined as zscores) of all the outages
for(v in 1:length(percent)){
crit_val[p,q,w,v]=zscore[order(-
zscore[ which(is.na(zscore[,p])!=1),p]),p][ceiling(percent[v]*length(which(is.na(zscore[,p])!=1))) [##90% (or if <10 zeros... ((z-1)/2)%
(less than 90%)) of the zeros are at or below this zscore
crit_val[p,q,w,v]=ifelse(crit_val[p,q,w,v]>0,0,crit_val[p,q,w,v])
#scores are ordered high to low (because of the "-zscore") and then the value is chosen (95% is chosen 1st)
}#end of v loop
HIF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would
be an error?
}#end of P loop
t#end of STD DEV VS. OUTAGE
} }#tend of W & Q loop
{for (i in 1:6){for (j in 1:36){for (v in 1:length(percent)){for (f in length(percent1):1){
test_crit_val[i,j,v,11-f]=sort(crit_val[i,j,,v])[ceiling(numdataid*percent1[f])]
#test_crit_val[combonaiton,interval,percentile_crit,percentile_idealcrit]
#low to high then chooses a number...in reverse (95% is chosen 1st)

1

}#erit_val key metrics and error information

#{write.table(day, file = "C:/Users/Jared/Google Drive/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)

#write.table(test_crit_val, file = "C:/Users/Jared/Google Drive/test_crit val.txt", sep = "\t", row.names = FALSE, col.names =
FALSE)

#write.table(day, file = "pecan/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code

#write.table(test_crit_val, file = "pecan/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code

#}#print the tables that will be needed in validation and aggregation processes

time1=Sys.time()-start_time
timel }#end of model building code

HHHHHHHAHHAHAHY ALID ATE#####H# AR
#requires "test_crit_val" from Model Building.R
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#library(readr)
#testdata <- read_csv("pecan/testdata.txt", col names = FALSE)#import the test data... format="'%Y-%m-%d %H:%M:%S-%z'
#colnames(testdata)=(c("X1","X2","X3"))
{dataidlist_test=unlist(unique(testdata[,3]))
numdataid=length(dataidlist_test)
possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440)
possible_combo_int=c(1,2,4,13,26,52)
percent=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95)
store_x_test=array(dim=c(6,36,numdataid))
pos_pos_test=array(dim=c(6,36,numdataid,length(percent),length(percent1)))
neg neg_test=array(dim=c(6,36,numdataid,length(percent),length(percent1)))
typellerror_test=array(dim=c(6,36,numdataid,length(percent),length(percentl)))
typelerror_test=array(dim=c(6,36,numdataid,length(percent),length(percent1)))
outlengstr_test=array(dim=c(numdataid,1000000))
day_test=array(dim=c(numdataid,2))
duplicates_test=numeric(numdataid)
minperyear=60%24*365 }#creates the variables
w=I#HHHHTESTS
{start_time=Sys.time()
for(w in 1:numdataid){#for each DatalD
run=subset(testdata,testdata$ X3==as.numeric(dataidlist_test[w])) #run is created for the individual DatalD
run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an
outage or a meter malfunction
if(sum(duplicated(as.numeric(run$X1)))>0) {duplicates_test[w]=1#notifies if there is any duplicates in the specific DatalD.
hypothetically this is a malfunction and would need to be fixed
run=run[!duplicated(run$X1),] }#if there was a duplicate the 1st value is assumped to be correct and everything else is an error.
run=run[!is.na(run$X1),]#removes the rows that do not have a valid date
run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order
xleng=length(run$X1)

{i=1
=1
while (i<2){chk=as.numeric(run[j,1])
if (chk%%(60*60*24)==60){
if (is.na(runfj,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining
of data set is not clean
else{i=i+1}}
else {j=j+1} }#this function finds the first position in the data to being clean_date
k=j
clean_date=as.numeric(unlist(run[j:xleng,1]))
}#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0

xleng=length(clean_date)#new length with trimmed times
totalmin=1+(clean_date[xleng]-clean_date[1])/60
day_test[w,1]=as.Date(clean_date[1], origin="1970-01-01")
day_test[w,2]=as.Date(clean_date[xleng], origin="1970-01-01")

{i=1
=1
clean=numeric(totalmin)
while (i<totalmin+1){
if(clean_date[1]+60*(i-1)-clean_date[j]==0){
if(is.na(runfk,2])){clean[i]=0}
else{clean[i]=(run[k,2])}
k=k+1
=i+l
J=it}
else{clean[i]=0
i=it+1}}
Hills gaps in data with 0 energy usage
xleng=length(clean)#new length with filled in missing data
clean=unlist(clean)
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{i=1#where are the 0s?
=1
k=1
zeros=sort(which(clean==0)) #tells me which rows are 0!
if(length(zeros)>1){
for (i in 1:(length(zeros)-1)){
if (zeros[i]-zeros[i+1]==-1){j=j+1}
else{outlengstr_test[w,k]=j
k=k+1
=1}
outlengstr_test[w,k]=j} }#last one!
else{if(length(zeros==1)){outlengstr_test[w,1]=1}
else{outlengstr test[w,1]=0}}
}#finds outage lengths and and frequency

q=1###4#TEST

for (q in 1:36){ #for each interval (36 different intervals)
int_leng_min=possible int leng min[q]#tested interval in "q-th" minutes
int_day=(60*24)/int_leng_min #how many intervals in a single day
x=floor(xleng/int_leng_min) #combination rule....new length rounded down
zeros_new=unique(ceiling(zeros/int_leng_min))
zeros_newl=zeros_new

{run_new=(sapply(1:x,function(i){
o=(sapply(1:int_leng_min,function(j){
(clean[int_leng_min*i-int_leng_min+j])}))
sum(o[ 1:int_leng_min])

)

run_newl=run_new
p=1####TEST
if(length(zeros_new)!=0){
run_new=run_newl
{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365%4))))*int_day)+1 #multipule of
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day.
chkl=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchkl=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int leng
min))-j+1}
else{if ((zeros[1])/int_leng_min)<j){zchk 1=numeric()}
else{zchk1=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
}#starts data within a day of the the middle of Jan, Apr, Jul, Oct

{ddays=(as.numeric(clean_date[1])-1302840000)/(60*60%24)
7=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day.
chk2=run_new[(j):x]
if(length(zeros)!=1 &
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng min))):length(zeros)]/int_leng
min))-j+1}
else{if ((zeros[1]/int_leng min)<j){zchk2=numeric()}
else{zchk2=unique(ceiling(zeros[1]/int_leng min))-j+1} }#in case there is only one "0" and that zero is below the new start
#cuts out any zeros that occur before j and re-indexs the values
}#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different
categories
zscore=array(dim=c(length(zeros_new),6))
chk=array(dim=c(length(zeros_new),6))
for(p in 1:6){
wk=possible_combo_int[p] #combine the data for "p" weeks

{if(wk==13){run_new=chk1
x=length(run_new)
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zeros_new=zchkl}
if(wk==26){run_new=chk2
x=length(run_new)
zeros_new=zchk2}
if(wk==52){run_new=run_newl
x=length(run_newl)
zeros_new=zeros_newl } } #alters the data if looking at seasonal or bi-yearly combinations

combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364
days/yr for calculations)

intmean=numeric(combo_yr)

intsd=numeric(combo_yr)

#must use 364 to keep whole weeks, starting and ending on the same day of the week! The specific month or paticular "number
date" are overlooked

#teach year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the
next! and so on...

groups=numeric()

x_combo=floor(x/int_day)

x=x_combo*int_day

if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[ | :(min(which(zeros_new>x))-1)]} }#trim
"zeros_new" as well, if there are zeros in the trim, zscore fails

n=ceiling(x/(364*int_day))

run_new=run_new[1:(x)]

for(i in 1:combo_yr) {groups|[i]=list(sapply(1l:n,function(y) {run_new[int day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data

for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i]}>=0))])}

for (iin l:combo_yr) {intmean[iJ=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean
and SD are created by combining using "p"th weeks

if(length(zeros_new)!=0){
for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&S5 for run_new could be shorter....
j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index
zscore([i,p]=(run_new[k]-intmean(j])/intsd[j] #use the "new_run" that contains a 0, find its z score away from the mean.
chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the Os at any interval
}#finds the standardized distance way from the mean (defined as zscores) of all the outages
store_x_test[p,q,w]=x
intsdopr=rep(intsd,ceiling(x/combo_yr))[ 1:x]#operator to make calculations quicker
intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker
for(v in 1:length(percent)){for(f in 1:length(percentl)){
typellerror_test[p,q,w,v,f]=length(which(zscore[,p]>test_crit val[p,q,v,f]))-
sum(chk[which(zscore[,p]>test_crit_val[p,q,v,f]),p]) #outputs the number of zeros that are larger than the "critical value", because
"zscore" only contains outages,
#those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0
then the outage can be ID'd by simply searching for Os.
typelerror_test[p,q,w,v,f]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,v,f]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,v,f]),zeros_new)))
neg_neg_test[p,q,w,v,f]=length(which(is.na(zscore[,p])!=1))-typellerror_test[p,q,w,v,f][#any outage with a zscore equal to or
less than the critical value is correctly ID'd as an outage (true reject the null)
pos_pos_test[p,q,w,v,f]=x-neg_neg_test[p,q,w,v,f]-typellerror_test[p,q,w,v,f]-typelerror_test[p,q,w,v,f]#all other values are
correctly ID'd no outage
} }#end of v & F loop

#typelerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating
ZEeros)
HIF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would
be an error?
}#end of P loop
t#end of STD DEV VS. OUTAGE
} }#tend of W & Q loop
{out_num_test=numeric(numdataid)
out_median_test=numeric(numdataid)
out_mean_test=numeric(numdataid)
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for (i in 1:numdataid)out num test[i]=length(outlengstr test[i,which(outlengstr_test[i,]>0)])

for (i in 1:numdataid)out median_test[i]=median(outlengstr_test[i,which(outlengstr test[i,]>0)])
for (i in 1:numdataid)out mean_test[i]=mean(outlengstr_test[i,which(outlengstr test[i,]>0)])
out_mean_total test=mean(outlengstr_test[which(outlengstr test>0)])

out_median_total test=median(outlengstr_test[which(outlengstr test>0)])

time1=Sys.time()-start_time
timel }#end of model validiation

#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))#
Specify axis options within plot()

{
setwd("C:/Users/Jared/Google Drive/01-Erickson - Thesis/1-Working Docs/Data/Pecan/Outputs")
##H###THESE ARE ONLY FOR ONE PART OF THE ANALYSIS.....
#{j=10
par(mfrow=c(1,1),xpd=T,mar=c(5,4,4,9))
for(j in 1:1){
chkl=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")
chk2=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th
Percentile","25th Percentile","15th Percentile","5th Percentile")
chk3=c("blue","red","green","black","orange","yellow")
for(k in 1:1){
#{k=2
#jpeg(filename = paste("crit_",k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750)

plot(c(1,36),c(-7,-1),type="n",main=paste("Ideal Critical Values \nFound Using the",chk2[k],"of the",chk2[j]), xlab="Interval
(minutes)", ylab="Critical Value",xaxt="n")
axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))
grid(NULL,NULL, Iwd = 2)
for(iin 1:6){
lines((1:(36)),test_crit_val[i,,j,k], col=chk3[i], lty=1, Iwd=4, pch=19)
points((1:(36)),test_crit_val[i,,j,k], col=chk3[i], pch=19, cex=1)}
legend(38,-3,chk1,cex=.7,y.intersp=1,title=("SD/Mean Combinations"),
Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=chk3 #imports a legend for the plot
#dev.off()
}

}#shows the specified "Critical Values" for each percentile

{
{
k=2
chk3=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th
Percentile","25th Percentile","15th Percentile","5th Percentile")
#tfor(j in 1:10){
{j=10
jpeg(filename = paste("TIE_",k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750)
par(mfrow=c(1,1),xpd=T,mar=c(5,4,4.,9))
plot(c(1,36),c(0,100),type="n",main=paste(" Type I Errors as % of Identified Outages \nFound Using the",chk3[k],"of
the",chk3[j]), xlab="Interval (minutes)", ylab="Percent Errors (%)",xaxt="n")
axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))
grid(NULL,NULL, Iwd = 2)
title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .3,col.main="dark blue",cex.main=.9)
chk=c("blue","red","green","black","orange","yellow")
for (i in
1:6){lines((1:(36)),(100*(rowSums(typelerror_test[i,,,j,k],na.rm=TRUE)/(rowSums(typelerror_test[i,,,j,k],na.rm=TRUE)+rowSums(n
eg neg_test[i,,.j,k],na.rm=TRUE)))), col=chk[i], lty=1, Iwd=4, pch=19)

points((1:(36)),(100*(rowSums(typelerror_test[i,,.j,k],na.rm=TRUE)/(rowSums(typelerror_test[i,,,j,k],na.rm=TRUE)+rowSums(neg_
neg_test[i,,,j,k],na.rm=TRUE)))), col=chk]i], pch=19, cex=1)}

legend(38,60,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),
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Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot
dev.off()
h
Htshows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd

{k=2
chk3=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th
Percentile","25th Percentile","15th Percentile","5th Percentile")
#for(j in 1:10){
{=10
jpeg(filename = paste("TIIE_"k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750)
par(mfrow=c(1,1),xpd=T,mar=c(5,4,4,9))
plot(c(1,36),c(0,12),type="n",main=paste("Type 1I Errors as % of Known Outages \nFound Using the",chk3[k],"of the",chk3[j]),
xlab="Interval (minutes)", ylab="Percent Errors (%)",xaxt="n")
axis(side=1, at=1:36,
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440))
grid(NULL,NULL, Iwd = 2)
title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9)
chk=c("blue","red","green","black","orange","yellow")
for (i in
1:6){lines((1:(36)),(100*(rowSums(typellerror_test[i,,,j,k],na.rm=TRUE))/(rowSums(typellerror_test[i,,.j,k],na.rm=TRUE)+rowSums
(neg_neg_test[i,,,j,k],na.rm=TRUE))), col=chk[i], lty=1, lwd=4, pch=19)

points((1:(36)),(100*(rowSums(typellerror_test[i,,,j,k],na.rm=TRUE))/(rowSums(typellerror_test[i,,,j,k],na.rm=TRUE)+rowSums(ne
g neg_test[i,,.j,k],na.rm=TRUE))), col=chk[i], pch=19, cex=1)}
legend(38,7,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"),
Ity=c(1,1,1,1,1,1),Iwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow") #imports a legend for the plot
dev.off()
}
}
}#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd
Htitsensitivity ! |##

par(xpd=T,mar=c(5, 4, 4, 2) + 0.1)
#line graph instead of the bar graph
{par(mfrow=c(1,1))
=1
chk=character()
chk=c("grayl","gray6","gray11","grayl6","gray21","gray26","gray31","gray36","gray41","gray46")
chk1=numeric()
for(fin 1:10){for(v in 1:10){chk1[j]=100*(sum(typellerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm =
T)+sum(typellerror_test[,,,v,f],na.rm = T))
=it
plot(c(1,10),c(0,.165),type="n",main=paste("Type Il Errors as % of Known Outages for all Combinations and Intervals"),xlab =
"Ideal Critical Value", ylab="Percent Errors (%)")
for(i in 1:10){lines(1:10,chk1[(i-1)*10+(1:10)], col=chk[i], Ity=1, Iwd=4, pch=19)
points(1:10,chk1[(i-1)*10+(1:10)], col=chk[i], pch=19, cex=1)}
title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9)
}grid()

{par(mfrow=c(1,1))
=1
chk1=numeric()
for(fin 1:10){for(v in 1:10){chk1[j]=100*(sum(typellerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm =
T)+sum(typellerror_test[,,,v,f],na.rm = T))
=t
barplot(chk1,col=c(rep("black",10),rep("light gray",10)),main=paste("Type 1I Errors as % of Known Outages for all Combinations
and Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent Errors (%)")
title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9)
axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe
lowest percentile \n(most negative value)"))
} #THIS SHOWS HOW SMALL A NUMBER OF TYPE II Errors there really are compared to type I

132

www.manaraa.com



{par(mfrow=c(1,1))
=1
chk1=numeric()
for(f in 1:10){for(v in 1:10){chk1[j]=100*(sum(typelerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm =
T)+sum(typelerror_test[,,,v,f],na.rm = T))
=it
barplot(chk1,col=c(rep("black",10),rep("light gray",10)),ylim = ¢(0,100),main=paste("Type I Errors as % of Identified Outages for
all Combinations and Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent Errors (%)")
title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .3,col.main="dark blue",cex.main=.9)

axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe
lowest percentile \n(most negative value)"))

{par(mfrow=c(1,1))
=1
chk1=numeric()
chk2=numeric()
for(fin 1:10){for(v in 1:10){chk1[j]=(sum(typellerror test[,,,v,f],na.rm = T))
chk2=chk1/max(chkl)
it
barplot(100*chk2,col=c(rep("black",10),rep("light gray",10)),main=paste("% of Max Type 1I Errors for all Combinations and
Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)")
title(" \"X% of the max total errors for all combinations and intervals\" ",line = .3,col.main="dark blue",cex.main=.9)
axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe
lowest percentile \n(most negative value)"))
i
{par(mfrow=c(1,1))
=1
chk1=numeric()
chk3=numeric()
for(fin 1:10){for(v in 1:10){chk1[j]=(sum(typelerror _test[,,,v,f],na.rm = T))
chk3=chk1/max(chkl)
=it
barplot(100*chk3,col=c(rep("black",10),rep("light gray",10)),main=paste("% of Max Type I Errors for all Combinations and
Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)")
title(" \"X% of the max total errors for all combinations and intervals\" ",line = .3,col.main="dark blue",cex.main=.9)
axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe
lowest percentile \n(most negative value)"))

)
{ par(xpd=T,mar=c(5, 4, 4, 2) + 0.1)

barplot(100*matrix(c(chk3,chk2),nrow=2, byrow=TRUE),col=c("red","dark blue"),ylim=c(0,120) ,main=paste("% of Max Errors
for all Combinations and Intervals"),space = 0,legend=c("Type I Error","Type 1I Error"),
args.legend=list(x=95,y=125,bty = "y",cex=.9),xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)")
axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","Smallest of \nthe
lowest percentile \n(most negative value)"))

h

sort(chk2)[1]#1.2% BEST FOR TYPE Il ERRORS
order(chk2)[11#1 (95% then 95% of the 95%!1) (v=1,£=1)
sort(chk3)[1]140.1% BEST FOR TYPE I ERRORS
order(chk3)[11#100 (5% then 5% of the 5%!!) (v=10,£=10)

sort(chk2+chk3)[1]#73.1% BEST FOR lowest amount of TYPE I and TYPE Il ERRORS
order(chk2+chk3)[1]# (65% then 85% of the 65%!!) (v=5,£=2)
chk2[20]#24% type 11
chk3[20]#49% type 1
} # this was before putting in a 0 block for critical value calculation
#23.0% best reduction of TIIE .18% best reduction of TIE (same locations)

#91.2% lowest combine (out of 200%; worst situation for both) 48.8% of max for TIIE...42.4% of max for TIE... position(v=10,f=2)
85% second percentile of the 5% first percentile

sum(typelerror_test[,,,,],na.rm = T)/(sum(typelerror_test[,,,,],na.rm = T)+sum(typellerror_test[,,,,],na.rm = T))#99.96% of errors are
type I errors
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v=1

f=1

sum(typelerror_test[,,,v,f],na.rm = T)/(sum(typelerror_test[,,,v,f],na.rm = T)+sum(typellerror_test[,,,v,f],na.rm = T))#99.9998% of
errors are type I errors

v=10

=10

sum(typelerror_test[,,,v,f],na.rm = T)/(sum(typelerror_test[,,,v,f],na.rm = T)+sum(typellerror_test[,,,v,f],na.rm = T))#88.86% of
errors are type I errors

v=10

=2

sum(typelerror_test[,,,v,f],na.rm = T)/(sum(typelerror_test[,,,v,f],na.rm = T)+sum(typellerror_test[,,,v,f],na.rm = T))#99.992% of
errors are type I errors

{

m=1

Ideal Critical Value=numeric( )

for(j in 1:10){ for(i in 1:10){Ideal Critical Value[m]=mean(test crit val[,,i,j])

m=m+1}}

m=1

errors=numeric( )

for(j in 1:10){ for(i in 1:10){errors[m]=sd(test_crit_val[,,i,j])

m=m+1}}

m=data.frame(errorm,errors)

percentile=1:100

library(plotly)

plot_ly(type = 'scatter',x=percentile,y=~Ideal Critical Value,mode="markers',error y=~list(value = errors,color = '#000000'))%>%

layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title="percentile',showticklabels = F)),yaxis=(list(title='Ideal

Critical Value')),title="Ideal Critical Value for Each Possible Percentile')

}#all percentiles are represented

{m=1
errorm=numeric( )
{ for(i in 1:10){errorm[m]=mean(test_crit_val[,,i,])
m=m+1}}
m=1
errors=numeric( )
{ for(i in 1:10){errors[m]=sd(test_crit_val[,,i,])
m=m+1}}

m=1

errorm=numeric( )

{ for(i in 1:10){errorm[m]=mean(test_crit_val[,,,i])

m=m+1}}

m=1

errors=numeric( )

{ for(i in 1:10){errors[m]=sd(test_crit_val[,,,i])

m=m+1}}

plot_ly(type = 'scatter',x=1:10,y=~errorm,mode="markers',error _y=~list(value = errors,color = '#000000"))
m=data.frame(errorm,errors) } #averages over one set of percentiles

{
typel=matrix(nrow = 36,ncol = 6)
for(j in 1:36){ for(i in
1:6) {typel[j,i]=sum(typelerror_test[i,j,,,],rm.na=T)/(sum(typelerror_test[i,j,,,],rm.na=T)+sum(neg_neg_test[i,j,,,]))}}
typell=matrix(nrow = 36,ncol = 6)
for(j in 1:36){ for(i in
1:6) {typell[j,i]=sum(typellerror_test[i,j,,,],rm.na=T)/(sum(typellerror_test[i,j,,,],rm.na=T)+sum(neg_neg_test[i,j,,,]))}}

y=1:36
x=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")
plot_ly(x=x,y=y,z=100*typeL type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='"Combination')),yaxis=(list(title='Interval
Index")),title="Heatmap of Type I Errors for All Percentiles \nby Combination and Interval')
y=1:36
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x=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")
plot_ly(x=x,y=y,z=100*typell,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='"Combination')),yaxis=(list(title='Interval
Index")),title="Heatmap of Type II Errors for All Percentiles \nby Combination and Interval')
}#Heatmaps of best intervals and combos

{

typel=matrix(nrow = 10,ncol = 10)

for(j in 1:10){ for(i in
1:10){typel[j,i]=sum(typelerror_test[,,,i,j],rm.na=T)/(sum(typelerror_test[,,,i,j],rm.na=T)+sum(neg_neg_test[,,,i,j]))} }

typell=matrix(nrow = 10,ncol = 10)

for(j in 1:10){ for(i in
1:10){typell[j,i]=sum(typellerror_test[,,,1,j],rm.na=T)/(sum(typellerror_test[,,,i,j],rm.na=T)+sum(neg_neg_test[,,,i,j]))} }

y=1:10
x=1:10
plot_ly(x=x,y=y,z=100*typel,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='"Combination')),yaxis=(list(title='Interval
Index")),title="Heatmap of Type I Errors for All Percentiles \nby Combination and Interval')
y=1:10
x=1:10
plot_ly(x=x,y=y,z=100*typell,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='"Combination')),yaxis=(list(title='Interval
Index")),title="Heatmap of Type II Errors for All Percentiles \nby Combination and Interval')
}#Heatmaps of best intervals and combos
{typel sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typel sumhouse[i,j,k,1]=sum(typelerror_test[i,j,,k,I],rm.na=T)}}}}
typell_sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typell_sumhouse[i,j,k,I]=sum(typellerror_test[i,j,.k,1],rm.na=T)}}}}
storex_sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){storex_sumhouse[i,j,k,I]=sum(store_x_test[i,j,],rm.na=T)}}}}
length(which(chk$dim1==6 & chk$dim3>=9 & chk$dim4==10))#51 of the 216 meet these specifications
min((typel_sumhouse+typell sumhouse)/storex_sumhouse)#21,600 options......
chkl=sort((typel sumhouse+typell sumhouse)/storex_sumhouse)[216]#.01012645... TOP 1% .... errors per interval
chk=data.frame(which((typel_sumhouse+typell sumhouse)/storex_sumhouse<=chk1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination")),yaxis=(list(title='count')),title='"Histogram of Top 1% Lowest Total Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title="Interval
Index")),yaxis=(list(title="count')),title="Histogram of Top 1% Lowest Total Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type="histogram')%>%
layout(margin=list(l1 = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Total Errors by 1st Percentile')
plot_ly(data=chk,x=chk$dim4, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Total Errors by 2nd Percentile")
(typel_sumhouse[6,8,10,10])/(storex_sumhouse[6,8,10,10])*60*24*365 #minutes of error per year
(typell_sumhouse[6,8,10,10])/(storex_sumhouse[6,8,10,10])*60*24*365 #minutes of error per year
chkl=sort((typel _sumhouse)/storex_sumhouse)[216]#.009055... TOP 10 %
chk=data.frame(which((typel_sumhouse)/storex_sumhouse<=chkl1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type='histogram',nbinsx =6)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination')),yaxis=(list(title="count')),title='"Histogram of Top 1% Lowest Type I Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type="histogram',nbinsx =36)%>%
layout(margin=list(l1 = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title="Interval
Index")),yaxis=(list(title="count')),title="Histogram of Top 1% Lowest Type I Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type="histogram',nbinsx =10)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Type I Errors by Percentile')

plot_ly(data=chk,x=chk$dim4, type="histogram',nbinsx =10, marker=list(line=list(width=0d0)))%>%
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layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Type I Errors by 2nd Percentile')

(typel_sumhouse[6,26,10,10])/(storex_sumhouse[6,26,10,10])*60%24*365 #minutes of error per year
(typell_sumhouse[6,26,10,10])/(storex_sumhouse[6,26,10,10])*60*24*365 #minutes of error per year

chkl=sort((typell_sumhouse)/storex_sumhouse)[216]#.0000324... TOP 10 %
chk=data.frame(which((typell_sumhouse)/storex_sumhouse<=chk1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type="histogram',nbinsx =6)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination')),yaxis=(list(title='"count')),title='"Histogram of Top 1% Lowest Type II Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title="Interval
Index")),yaxis=(list(title="count')),title="Histogram of Top 1% Lowest Type II Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type='histogram',nbinsx =10)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Type II Errors by Percentile')
plot_ly(data=chk,x=chk$dim4, type='histogram',nbinsx =10)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 1% Lowest Type II Errors by 2nd Percentile')

chk3=numeric(400)

for(i in 1:400)chk3[i]=typel sumhouse[chk[i,1],chk[i,2],chk[i,3],chk[i,4]]

order(chk3)[c(1)]

(typel_sumhouse[6,1,10,10])/(storex_sumhouse[6,1,10,10])*60*24*365 #minutes of error per year
(typell_sumhouse[6,1,10,10])/(storex_sumhouse[6,1,10,10])*60*24*365 #minutes of error per year
}#thistograms of top 10% options

{typel sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typel sumhouse[i,j,k,1]=sum(typelerror_test[i,j,.k,1],rm.na=T)}}}}
typell_sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typell_sumhouse[i,j,k,I]=sum(typellerror_test[i,j,.k,1],rm.na=T)}}}}
storex_sumhouse=array(dim = ¢(6,36,10,10))
for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){storex_sumhouse[i,j,k,I]=sum(store_x_test[i,j,],rm.na=T)}}}}
min((typel_sumhouse+typell sumhouse)/storex_sumhouse)#21,600 options......
chkl=sort((typel sumhouse+typell sumhouse)/storex sumhouse)[21600-2160]#.51401... BOTTOM 10 %
chk=data.frame(which((typel_sumhouse+typell _sumhouse)/storex_sumhouse>=chk1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination')),yaxis=(list(title="count')),title='"Histogram of Top 10% Largest Total Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title="Interval
Index")),yaxis=(list(title="count')),title="Histogram of Top 10% Largest Total Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 10% Largest Total Errors by Percentile')
plot_ly(data=chk,x=chk$dim4, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count)),title="Histogram of Top 10% Largest Total Errors by 2nd Percentile')
chkl=sort((typel sumhouse)/storex_sumhouse)[21600-2160]#.513791... BOTTOM 10 %
chk=data.frame(which((typel_sumhouse)/storex_sumhouse>=chkl1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination")),yaxis=(list(title="count')),title='"Histogram of Top 10% Largest Type I Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4,nbinsx =36),xaxis=(list(range=list(.5,36.5),title='Interval
Index")),yaxis=(list(title="count')),title="Histogram of Top 10% Largest Type I Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title="Histogram of Top 10% Largest Type I Errors by Percentile')
plot_ly(data=chk,x=chk$dim4, type="histogram')%>%
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layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count')),title='"Histogram of Top 10% Largest Type I Errors by 2nd Percentile')
chk1=sort((typell_sumhouse)/storex_sumhouse)[21600-2160]#.001938... BOTTOM 10 %
chk=data.frame(which((typell sumhouse)/storex sumhouse>=chkl1,arr.ind=TRUE))
plot_ly(data=chk,x=chk$dim1, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad =
4),xaxis=(list(range=list(.5,6.5),title='"Combination')),yaxis=(list(title="count')),title='"Histogram of Top 10% Largest Type II Errors by
Combination')
plot_ly(data=chk,x=chk$dim2, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4,nbinsx =36),xaxis=(list(range=list(.5,36.5),title="Interval
Index")),yaxis=(list(title="count")),title="Histogram of Top 10% Largest Type II Errors by Interval')
plot_ly(data=chk,x=chk$dim3, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title="1st
Percentile')),yaxis=(list(title='count')),title='"Histogram of Top 10% Largest Type II Errors by Percentile')

plot_ly(data=chk,x=chk$dim4, type="histogram')%>%
layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=c(.5,10.5),title="2nd
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type II Errors by 2nd Percentile')
}#histograms of BOTTOM 10% options

137

www.manharaa.com




Criticai Value

Appendix 3. Pecan Street Ideal Critical Value Sensitivity- Critical Value Graphs for 95™ Second Percentile
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Found Using the 95th Percentile of the 75th Percentile
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Found Using the 95th Percentile of the 25th Percentile
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Ideal Critical Values

Found Using the 95th Percentile of the 15th Percentile
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Appendix 4. Pecan Street Ideal Critical Value Sensitivity- Critical Value Graphs for 95™ First Percentile
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Ideal Critical Values
Found Using the 75th Percentile of the 95th Percentile
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Found Using the 65th Percentile of the 95th Percentile
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Ideal Critical Values

Found Using the 55th Percentile of the 95th Percentile
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Found Using the 45th Percentile of the 95th Percentile
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Ideal Critical Values

Found Using the 15th Percentile of the 95th Percentile
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Appendix 5. Pecan Street Ideal Critical Value Sensitivity -Reduction of Type I Errors

Histogram of Top 1% Lowest Type I Errors by Combination Histogram of Top 1% Lowest Type I Errors by Interval
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Appendix 6. Pecan Street Ideal Critical Value Sensitivity -Reduction of Type II Errors

Histogram of Top 1% Lowest Type II Errors by Combination Histogram of Top 1% Lowest Type II Errors by Interval
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Appendix 7. MITLL Electrical System Architectures

Architectures Used for Installation Modeling
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