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Abstract 

In 2013, the Department of Defense (DoD) required its services to implement 

advanced metering for the purpose of reducing energy usage (Department of Defense, 

2013).  Additionally, the DoD has aimed to improve its ability to assure a continuous 

energy supply to all of its installations.  This study investigated processes for applying 

advanced meters on Air Force bases to increase energy assurance.  This study also 

identified strategies for using advanced meters to influence infrastructure funding.  This 

was accomplished through the use of extensive advanced meter data.  The data was 

analyzed for outages and a procedure was created to locate outages in energy usage 

datasets by using means and standard deviations.  Advanced meters with more frequent 

data collection were able to locate outages easier than meters with less frequent data 

collection.  Advanced meters do not only reduce energy usage, but they also have the 

ability to report outages.  By collecting outage data, funding can be applied to the least 

reliable electrical infrastructure. 
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INFLUENCING EFFECTIVE ELECTRICAL DISTRIBUTION 
MODERNIZATION THROUGH ADVANCED METERING 

 
 
 
 

I. Introduction 

1.1 Background 

The United States Department of Defense (DoD) defines energy resilience as “the 

ability to prepare for and recover from energy disruptions that impact mission assurance 

on military installations”(Department of Defense, 2016a).  This energy resilience is 

increased and protected by the expenditure of tax payer dollars to modernize and improve 

utility systems (Department of Defense, 2004).  The then Assistant Secretary of the Air 

Force for Installations, Environment, and Energy, Ms. Miranda Ballentine, stated, “Over 

the last 10 to 15 years our missions have become more and more dependent on [the] 

steady flow of electrons.”  She also stated that the steady flow of electrons are as 

important, for some missions, as jet fuel to the Air Force’s aircraft (Pew Charitable 

Trusts, 2017).  The leaders of the United States Air Force understand that accomplishing 

core missions to solidify the United States’ National Security requires “significant 

amounts of energy” (Department of the Air Force, 2017b).  This significant amount 

equated to $3.5 billion or 198 TBtu of installation energy in Fiscal Year 2016 (FY16) for 

the DoD (Office of the Assistant Secretary of Defense for Energy Installations and 

Environment, 2016b).  This amount of energy is equivalent to three times the annual 

energy produced by the Grand Coulee Dam, the largest power plant in North America 
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(United States Department of the Interior: Bureau of Reclamation, 2015).  Military 

leaders also understand that clear access to energy is also vital to National Security.  The 

DoD has set up an energy strategy to ensure “resilient, available, reliable, and continuous 

power” is provided to its installations (Office of the Assistant Secretary of Defense for 

Energy Installations and Environment, 2016b). 

The Air Force’s strategy includes “improving resiliency” by seeking to “mitigate 

impacts from disruptions in energy supplies to critical assets, installations, and priority 

missions” (Department of the Air Force, 2017b).  These disruptions and the recovery of 

those disruptions are outlined in Air Force Policy Directive 90-17, where it states that 

“The Air Force will…[b]e able to power any infrastructure identified as critical to the 

performance of mission essential functions independent of the utility grid for the period 

of time needed to relocate the mission or for at least seven days, whichever is longer” 

(Department of the Air Force, 2016c).  The direction of a minimum of seven days grid 

independence allows mission owners to have an objective and a goal for planning and 

infrastructure upgrades. 

Issues arise when infrastructure upgrades must be tailored to fit in the bounds of a 

finite construction effort where they compete against other projects at bases around the 

world for funding.  This competition is necessary because the DoD cannot fund all of its 

facility requirements.  Choosing which energy project to fund in the Air Force is guided 

by the Secretary of the Air Force’s priority of “Cost-Effective Modernize…to increase 

the lethality of the force” (Secretary of the Air Force, 2017).  Due of prioritization 
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models, if the impact of an energy project is not tangible, then the project does not get 

funded (see section 2.4 Asset Management).  Identifying exactly where the issues are and 

where funding needs to be sent can be answered by applying data from advanced 

electrical meters. 

Electrical metering of “all Federal buildings” is required by the National Energy 

Conservation Policy Act (The United States Congress, 2005).  A 2013 policy 

memorandum from the Office of the Secretary of Defense further outlined additional 

metering requirements for the DoD.  Contained therein was the goal of capturing 60 

percent of the DoD’s electrical energy usage by year 2020 through the use of “advanced 

meters” (Air Force Civil Engineer Center, 2017a; Department of Defense, 2013).  

Additionally, a five percent energy cost savings was used to justify the installation costs 

of these meters (Department of Defense, 2013).  These meters have the ability to meet 

congressional requirements while also identifying issues in real property and electrical 

infrastructure owned by the Air Force and the DoD. 

1.2  Problem Statement  

The DoD seeks to minimize the number of utility outages experienced on its 

installations.  The DoD requires all installations to report utility outage details in order to 

inform Congress on the status of its energy usage (The United States Congress, 2017b).  

The causes of utility outages for the DoD during the last five fiscal years are shown in 

Figure 1; the largest cause being equipment failure as shown in Figure 2.  In an effort to 

reduce these outages and increase the quality of power, the DoD has created energy 
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objectives.  These objectives are: reduce demand, expand supply, and adapt future forces 

and technologies (Office of the Assistant Secretary of Defense for Energy Installations 

and Environment, 2016b).  If focus is placed on modernizing and upgrading the 

equipment, equipment failure could become a smaller percentage of the problem.  The 

issue remains to identify where exactly to modernize and upgrade. 

 

Figure 1. Cause of DoD Outages Lasting Longer than 8 hour 
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Figure 2. (FY12-16) Number of DoD Outages Lasting Longer than 8 hours by Cause 

Without clear understanding of where the exact issues lay, infrastructure funds 

can be spent in less than optimum ways.  The DoD and the Air Force fund energy 

projects through the same appropriations and financial channels that other infrastructure 

components fall under (Department of Defense, 2004).  This makes it difficult for energy 

projects to stand out amongst the rest of the projects that also compete for this money.  

With a better understanding of where the weakest links in the energy network exist, more 

directed and equitable funding can be disbursed.  This understanding can be gained with 

the use of electrical energy meter data. 

1.3 Research Objectives  

The objective of this research is to develop best practices for the Advanced 

Metering Infrastructure (AMI) in order to provide the greatest energy resilience impact 

for the minimum economic input.  Additionally, this research aims to build a framework 



www.manaraa.com

6 

 

for pin-pointing the most unreliable components of electrical distribution systems at 

individual installations.  This research effort is also geared towards evaluating the current 

prioritization of energy related projects and how applying advanced meter data to those 

priorities could assist in funding more effective projects.  With a more informed strategy 

of how to manage the electrical distribution systems, more fiscally minded investments 

can be made to improve the DoD’s energy resilience. 

1.4 Research Focus  

The focus of this research is to better inform decision makers on the best way to 

spend the next available energy dollar.  Before spending money on modernizing electrical 

distribution networks the Air Force needs to know where to apply that funding.  The Air 

Force recognizes the importance of meter implementation and how it can “drive cost-

effective, energy management and investment practices,” but more can be done to make 

these far-reaching principles a reality throughout the Air Force (Department of the Air 

Force, 2016b).  It is imperative to ensure taxpayer dollars are being spent effectively and 

efficiently on these investments especially with an increasingly diminishing DoD budget. 

1.5 Investigative Questions  

Investigative questions help give more focus to the research.  Three main 

questions for this thesis on energy resilience and advanced metering are as follows: 

i. Can outages be found using historical advanced meter data with Means and 

Standard Deviations? 

A. If so, what Standard Deviation should be used? 
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ii. What is the optimum data interval and combination to identify outages using 

historical advanced meter data? 

iii. How does advanced meter data affect electrical grid modernization planning 

including advanced energy production technology?  

 

1.6 Methodology  

The methodology used in this research was built around Sensitivity Analysis.  

These methods will be further explained and applied in Chapter 3.  Sensitivity Analysis 

will be conducted in order to identify electrical outages using different meter data 

intervals and configurations.  Simulations and data analysis were primarily built upon 

Pecan Street Data from the University of Texas at Austin; a residential advance meter 

database.  Findings were tested against electrical distribution networks and electrical 

energy usage from Ellsworth Air Force Base (AFB).  Applications that were used in the 

thesis are the Microgrid Design Tool Kit from the Sandia National Laboratory and a tool 

developed by the Massachusetts Institute of Technology Lincoln Laboratory Energy 

Systems Group. 

1.7 Assumptions/Limitations  

The assumptions and limitations of this study are primarily based on the nature of 

the current data and information that is available within the DoD.  Energy metering, 

outage and consumption data through the DoD Annual Energy Management Report and 

data obtained by facility operators are assumed to be accurate to the point that clear 
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conclusions can be based.  A limitation of this thesis is that costs of advanced meters are 

not investigated or applied in the analysis. 

1.8 Implications  

Possible implications include a refined way of looking at meter data to inform the 

investments the Air Force makes on its electrical distribution systems.  Under the current 

prioritization models for utility projects, including electrical distribution, incorrect 

ranking is occurring inherently because models are not perfect.  If electrical distribution 

projects for the Air Force are documented with outage information, then more equitable 

funding can be dispersed for important but misrepresented projects.  Doing so would help 

the Air Force make more objective decisions thus improving their decision making 

ability. 
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II. Literature Review 

2.1 Introduction 

The purpose of this chapter is to provide the baseline for the research of this 

thesis.  Much work as already been done in the fields of advanced metering, military 

facility asset management and infrastructure modernization.  By exploring these and 

other research topics, synergistic benefits can be seen by applying these topics cross 

functionally. 

2.2 Definitions 

When investigating the quality of power at a distribution level three related 

definitions are vital to understand: resilience, availability, and reliability.  First, energy 

resilience is defined by DoD Instruction 4170.11, Installation Energy Management, as 

“the ability to prepare for and recover from energy disruptions that impact mission 

assurance on military installations” (Department of Defense, 2016a).  Thus, military 

energy resilience is the ability to minimize the impact on mission accomplishment from a 

distribution outage or disruption.  The Air Force’s approach to energy management is 

defined by the mantra, “Mission assurance through energy assurance” while 

concentrating on energy resilience (Department of the Air Force, 2016c). 

Next, Power availability is defined by Army Technical Manual (TM) 5-698-1, as 

“the percentage of time that a system is available to perform its required function(s)” 

(Department of the Army, 2007). The Institute of Electrical and Electronic Engineers 
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(IEEE) similarly, but with more expansion, define availability as “the ability of an item 

under combined aspects of its reliability, maintainability, and maintenance support to 

perform its required function at a stated instant of time or over a stated period of time” 

(Institute of Electrical and Electronic Engineers, 2007).  This makes availability a 

measure of access to electricity to perform an intended function.  Availability is 

sometimes measured in unserved load in watt-hours, the amount of energy that would 

have been used if electricity was available (N Judson, Pina, Dydek, Castillo, & Van 

Broekhoven, 2016; Nick Judson & Pina, 2017). 

Lastly, reliability is also defined by Army TM 5-698-1 as “the probability and 

frequency of failures (or more correctly, the lack of failures)” (Department of the Army, 

2007).  Again, the IEEE also defines reliability as, “the ability of a component or system 

to perform required functions under stated conditions for a stated period of time” 

(Institute of Electrical and Electronic Engineers, 2007).  Reliability, in a basic sense, can 

be seen as the percentage of times a light will turn on when the switch is flipped. 

Even with proper definitions, these topics can become confusing and the goals of 

each specific energy attribute can be blurred.  Resilience is different from availability 

which is different from reliability.  All definitions could also fit under the umbrella of 

energy assurance.  To aid to the confusion, most State Public Utility Commissions do not 

distinguish between resilience and reliability when evaluating the economics of an energy 

project (K. LaCommare, Larsen, & Eto, 2016).  With additional attention to detail, these 

definitions assist in the planning and evaluating energy related projects.  These three 
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definitions, with no one definition being more important than the other, lay the ground 

work for communicating about power quality and provide metrics to measure then 

improve and achieve. 

2.3 Funding 

All of the services in the DoD manage their installation energy programs 

differently.  The Air Force uses Head Quarters U.S. Air Force (HAF) to provide “policy, 

guidance, oversight, and resources,” and it uses the Air Force Civil Engineer Center 

(AFCEC) to “manage and facilitate the execution of energy programs” (Office of the 

Assistant Secretary of Defense, 2016).  These two offices work in tandem to meet the 

three Air Force Energy Goals: Improve Resiliency, Optimize Demand, and Assure 

Supply (Department of the Air Force, 2017).  Some of the ways they meet these goals are 

through the use of appropriated funds and utility privatization approved through Congress 

(Department of Defense, 2004; The United States Congress, 2017).  

Utility privatization is accomplished by setting up a contract with a private 

company to operate and maintain a given utility.  Utilities include the generation, 

treatment, collection, transmission, or supply of electric power, water, wastewater, steam, 

hot water, chilled water, natural gas or telecommunications (The United States Congress, 

2017a).  Defense Logistics Agency (DLA) is a governmental agency that provides 

logistical support to the DoD and other government departments and agencies.  DLA also 

has an energy division that “provides petroleum products/lubes, alternative 

fuel/renewable energy, aerospace energy, fuel quality/technical support, fuel card 



www.manaraa.com

12 

 

programs, and installation energy services” (Defense Logistics Agency, 2017).  This 

division assists the DoD with completing the privatization process on all of its service’s 

installations.  In DoD Instruction 4140.25, it states that DLA “assists the DoD 

Components with global energy commodity infrastructure privatization and demand 

management, including technical and contract support for the management of energy 

commodities” (Department of Defense, 2015a).  DLA through privatization has saved the 

Air Force 511 million dollars in cost avoidance of infrastructure maintenance and 

commodity purchasing through more efficient systems (Air Force Civil Engineer Center, 

2017f).  In a capitalistic economy the contractor wants to maximize profit and is 

incentivized to reduce energy usage.  Privatization is a useful tool because it places the 

opportunity to succeed and risks on the contractor. 

Energy Savings Performance Contract (ESPC) is a program where third-party 

investing is incorporated to projects where energy can be saved or reduced.  The Air 

Force will continue paying at the normal, pre-ESPC, billing rate and any savings that is 

generated will be used to pay the third party back for providing the capital for the 

upgrades.  These efforts are over seen by an Energy Service Company (ESCO) who is 

charged providing the service to the Air Force while paying back the third party through 

energy savings.  If the project does not reduce energy the contractor will not be paid (Air 

Force Civil Engineer Center, 2017b).  ESPCs require basic metering and often use 

advanced metering to validate the upgrades and success of the project (Marqusee, 
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Schultz, & Robyn, 2017).  Again, the contractor is given the opportunity to provide a 

service and maximize profit like utility privatization. 

The Energy Resilience and Conservation Investment Program (ERCIP) is a 

portion of the  Military Construction (MILCON) appropriation that is used to perform 

major construction efforts in the DoD (Air Force Civil Engineer Center, 2017c; Defense 

Acquisition University, 2017).  In the Air Force, the 3300 MILCON appropriations are 

received from the US Congress for execution through the annual National Defense 

Authorization Act (Defense Acquisition University, 2017).  According to the Energy 

Portfolio Integration Manager of the Air Force, the Air Force receives 40‐50 million 

dollars annually for ERCIP related construction (Ramos, 2017).  These projects are 

funded to produce or reduce energy usage in all its forms (Air Force Civil Engineer 

Center, 2017c).  The Air Force can also receive money directly from the MILCON 

program for energy related projects, but that is unlikely because of the creation of the 

ERCIP subset (Ramos, 2017).   

Air Force and the DoD also use power purchase agreements (PPA) and enhanced 

use leases (EULs) to provide power to their installations.  These programs leverage real 

property and private contractors to create an advantageous situation for both parties 

involved.  PPA are set up with contractors to provide renewable energy specifically for 

use on a DoD installation (Office of the Assistant Secretary of Defense for Energy 

Installations and Environment, 2017).  EULs are agreements that provide a lease on land 

owned by the DoD to contractors for the purpose of energy production or reduction 
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(Office of the Assistant Secretary of Defense for Energy Installations and Environment, 

2017).  PPA and EUL are very reliant on good contracting practices and require just as 

much, if not more, involvement than any other project performed by the Air Force. 

The final way the Air Force updates and modernizes their infrastructure through 

the appropriations for Facilities Sustainment, Restoration and Modernization (FSRM) 

under the 3400 Operations and Maintenance (O&M) appropriation made available to the 

DoD through the U.S. Congress (Defense Acquisition University, 2017).  This money is 

designated “for means the alteration or replacement of facilities solely to implement new 

or higher standards, to accommodate new functions, or to replace building components” 

including “utility plants [and] distribution systems” (Department of Defense, 2004).  

These funds are used to sustain the operations of the military and their funding level is 

usually given to the Air Force as a function or fraction of their current assets (Department 

of Defense, 2015b).  The assets must then be prioritized so that money can be dispersed 

in a systematic way.  This system is called asset management. 

2.4 Asset Management 

In Executive Order 13327, the term asset management is coined as the “efficient 

and economical use of America’s real property assets” (Bush, 2004).  Many times for the 

DoD that means attempting to manage assets—facilities and equipment—that were 

constructed or installed around World War II (Department of Defense, 2015b).  The 

condition and importance of the many different and complex infrastructure items have 

driven the need for a focused approach to maintenance and modernization.  This 
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approach entails focusing investments and manpower in a systematic way to prevent 

mission failure—an approach known as asset management.  One of these systematic 

methods is applying a Mission Dependency Index (MDI) to aid in prioritizing facility 

funding in the Air Force.  Grussing et al. explains MDI as “the relative importance of an 

infrastructure asset (facility) in terms of its mission criticality” (Grussing et al., 2010).  

Standard MDIs are created for all facilities enterprise wide and deviations from the 

standard are reviewed at AFCEC (Mills et al., 2017).  The standard list of MDIs are For 

Official Use Only and will not appear in this thesis, however a breakdown of MDI can be 

seen in Table 1. 

Table 1. MDI Breakdowns (Mills et al., 2017) 

 

An issue with the standard MDI is that it does not account for connected systems 

like utilities, also known as “network facilities,” that service multiple facilities 

(Department of the Air Force, 2016a).  Rather, standard MDIs are set for each piece of 

infrastructure individually.  A study conducted by the Research and Development 

(RAND) Corporation by Mills et al. contends that while these MDIs are useful they 

should not be blindly trusted.  Mills et al. claim that additional work needs to be done to 

“reveal and clarify critical linkages” that exist on Air Force installations (Mills et al., 

2017).  The issue arises because MDIs are used directly in the prioritization of FSRM 

Tier Criteria Recommended MDI
1 Mission critical 85 to 99
2 Direct mission support 70 to 84
3 Base support 60 to 69
4 Community support below 60
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projects.  The MDI of a facility accounts for 60 percent of the Consequence of Failure 

(CoF) metric (Mills et al., 2017).  Without the “critical linkages,” projects and 

infrastructure could be misrepresented and their true impact misunderstood. 

The other aspect of asset management is doing predictive maintenance or 

condition based maintenance where equipment and facilities are not repaired or 

maintained unless the health of the equipment or facility indicates it is warranted 

(Software Engineering Institute, 2011).  This leaves room for interpretation and 

flexibility in maintaining infrastructure.  Mills et al. report that infrastructure that is 

degraded will require more repair funds as time goes by and they are more susceptible to 

outages and catastrophic failures (Mills et al., 2017).  Specific to electrical distribution 

systems, Bahmanyar et al. recommend that investments in the distribution lines and 

preventative maintenance, such as increased tree trimming, are required in order to 

improve performance (A Bahmanyar, Jamali, Estebsari, & Bompard, 2017).  To quantify 

and standardize the condition of assets across all military services, a probability of failure 

(PoF) metric was developed through the use of a Sustainment Management System 

(SMS) (Mills et al., 2017; Under Secretary of Defense for Acquisition Technology and 

Logistics, 2013).  The SMS is a computer based program for evaluating the condition of a 

facility or a piece of equipment.  This PoF value is a vital component to the prioritization 

of projects in the Air Force (Mills et al., 2017). 

CoF and PoF account for 200 out of 210 points of the scoring metric which 

decides the fate of which projects will receive funds from Congress.  The final 10 points, 
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approximately five percent of the total points, are awarded to a project based off of the 

savings to investment ratio (SIR).  The SIR is a calculation of the total discounted 

operational savings divided by the total investment for the project (Air Force Civil 

Engineer Center, 2017c; Mills et al., 2017).  This value is found by using the Building 

Life Cycle Cost (BLCC) tool developed by the Department of Energy following the 

Federal Life Cycle Cost Methodology and Procedures found in Title 10 of the Code of 

Federal Regulations (Air Force Civil Engineer Center, 2017c).  While seemingly small, 

the SIR points could mean the difference in getting funded or not when prioritized against 

all the projects throughout the Air Force. 

The CoF and PoF are even more specific for “Utilities” projects.  Utilities are 

defined as “a facility or system composed of one or more pieces of equipment connected 

to or part of a structure and designed to produce, transmit, or distribute a service such as 

heat, electricity, water, or sewage disposal” (Department of the Air Force, 2016a).  The 

PoF of electrical utilities is calculated using the remaining useful life and direct condition 

rating (found using visual inspection) (Air Force Civil Engineer Center, 2017e).  For 

other utilities, including water and steam infrastructure, PoF is also calculated using the 

total number of outages experienced.  AFCEC’s Electrical Sub-Activity Management 

Plan Program Manager stated that electrical outages are not considered in the PoF metric 

because if an outage occurs it is usually because equipment fails and that equipment is 

directly replaced (Benson, 2017).  Equipment could be a large part for systemic failures, 

but the issues may not be solved with a simple swap of equipment.  In fact, Krajnak states 
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that the collection of electrical fault information can help identify “problem areas” for 

future modernization (Krajnak, 2000).  Advanced meter data could be used to find these 

systemic issues and historical patterns. 

2.4.1 Critical Review of Facilities Sustainment, Restoration and Modernization 

A review was performed on the FY17 and 18 Integrated Priority Lists (IPLs).  

The IPLs were analyzed for utility projects and how electric projects compare to other 

utilities that use outages as a measure of prioritization.  The FY18 IPL contained 4,950 

projects or other funding line items.  The Air Force announced 3,376 projects or line 

items, worth approximately 2.1 billion dollars, for funding on its Construction Task 

Order.  The IPL does not designate what type of project it is because some projects are 

complex.  However, the IPL does break down by the recommended Activity Management 

Plan (AMP).  AMP categories in the FY18 IPL included: Utilities, Facilities, 

Transportation, Natural Infrastructure and Real Estate.  Electrical projects are a part of 

the Utilities AMP, which contains 358 projects.  Other types of projects in the Utilities 

AMP included: Water, Wastewater, HVAC, and Natural Gas.  To locate electrical 

projects in the IPL a word search of the project title and project description was 

conducted within the Utilities AMP projects.  The first word used was “electric,” from 

there additional words were used to locate electrical projects.  These additional words 

included: switch gear, substation, low volt, high volt, volt, cables, transformer, generator, 

distribution, power, light, energy, circuit, and feeder.  The Utilities AMP projects were 

again reviewed line by line to locate missing electrical projects.  If project included 
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multiple utilities, then the project would still be designated as an electrical project.  This 

process was repeated for the FY17 IPL to increase the sample size. 

The Facilities Sustainment, Restoration and Modernization (FSRM) budget is 

executed by using an IPL to prioritize projects for future funding.  As described in the 

previous section, electrical projects in the FSRM program do not use outage information 

to influence funding through the probability of failure (PoF) metric.  This review was 

conducted by comparing characteristic between Utilities Activity Management Plan 

projects.  Figure 3 gives the breakdown of the relevant data comparisons. 

 

Figure 3. Review Outputs of Integrated Priority List 

The 2017 and 2018 ILPs showed similar trends points to issues that could be 

occurring in FSRM program.  In 2017, a higher percentage of non-electrical projects 

were in the Construction Task Order (CTO) for funding.  For 2018, all utilities projects 

were in the CTO close to or at the same rate.  For both 2017 and 2018, electrical projects 

were more expensive, received a worse priority, and rated lower for the PoF metric.  It is 

unclear if outage information could have changed the PoF.  Both electrical and non-

electrical utilities projects have the same potential to score 100 on the PoF.  It is very 

possible that non-electrical utilities actually do have a worse condition overall in the Air 

# of proj In CTO Below CTO
Cost per 
Project

Mean MAJCOM 
Priority

Medain MAJCOM 
Priority

Mean Prob of 
Failure

Median Prob 
of Failure

Non-Electrical 408 39% 61% $946K 137 107 85 100

Electrical 
155       

(28% total)
30% 70% $1,070K 193 204 75 80

Non-Electrical 341 67% 33% $1,426K 83 72 97 100

Electrical 
111         

(25% total)
68% 32% $1,519K 94 70 92 10020
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Force.  This comparison does not prove statistical difference, but simply shows the 

apparent gap between electrical and non-electrical utility projects.  This review is not 

rigorous analysis, but analysis should be completed on this topic to see if this issue is 

systemic or what is the true cause for this discrepancy. 

2.5 Electrical Meters 

As required by 10 U.S.C. §2924, 10 U.S.C. §2911 and 42 U.S.C. §8258, the DoD 

is required to report energy usage, energy management activities, and energy reduction to 

Congress (Office of the Assistant Secretary of Defense for Energy Installations and 

Environment, 2017).  The military has begun the implementation of Advanced Metering 

Infrastructure (AMI) to better collect this data for Congress.  According to the Software 

Engineering Institute, AMI are, “Systems that measure, collect, and analyze energy usage 

from advanced devices such as electricity meters, gas meters, and/or water meters, 

through various communication media on request or on a predefined schedule” (Software 

Engineering Institute, 2011).  The term “advanced meter” is commonly interchanged with 

the term “smart meter.”  In fact, Congress uses the terms interchangeably in the Energy 

Policy Act of 2005 (The United States Congress, 2005).  Liu et al. state that advanced 

meters are only used by producers and consumers.  They state that producers are 

interested in usage habits to best serve their customers while making the most money and 

consumers just want to know how to save money (Liu, Golab, Golab, Ilyas, & Jin, 2016).  

The DoD appears to fit into both the producer and consumer roles, making advanced 
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metering a conceivable program.  The Air Force’s AMI program is called the Advanced 

Meter Reading System (AMRS). 

The AMRS collects energy usage data every 15 minutes on specific single 

facilities or single transformers if a facility has more than one transformer (Air Force 

Civil Engineer Center, 2017a; Carnley, 2017; Department of the Air Force, 2017a).  The 

specific data stored includes but is not limited to, “power factor, peak power, total 

consumption over time, and energy use” (Department of the Air Force, 2017a).  The 

meters specified in the Air Force Meter Data Management Plan (MDMP) have the ability 

to store and communicate other energy data as well—including highlighting outages as 

seen later in this section.  The AMRS is forecasted to save over 20 million dollars in 

energy costs a year once in place (Department of the Air Force, 2017a).  By applying the 

MDMP and other guidance from AFCEC, the Air Force is on track for meeting the 

congressional mandates for advanced metering. 

Electrical metering of “all Federal buildings” is required by the National Energy 

Conservation Policy Act.  This law required basic metering to be accomplished by the 

end of FY12 (The United States Congress, 2005).  The DoD met Congresses’ meter 

requirement and then DoD took facility metering even further by requiring advanced 

meters deployment by the services.  On April 16, 2013, the then Acting Deputy Under 

Secretary of Defense for Installations and Environment, John Conger, signed an energy 

meter policy memorandum for all services.  The policy expands the Advanced Meter 

deployment to 60 percent of all electricity usage by the end of Fiscal Year 2020 
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(Department of Defense, 2013).  The progress of each services’ advanced meter 

deployment is tracked in the Annual Energy Management and Resilience Report 

(AEMRR), formerly known as the Annual Energy Management Report (AEMR) prior to 

2017, to Congress (Air Force Civil Engineer Center Public Affairs, 2017; Office of the 

Assistant Secretary of Defense for Energy Installations and Environment, 2016b). The 

Air Force captured eight percent of the total energy usage at the end of FY16 and hope to 

have 27 percent captured by the end of FY17 through the AMRS (Air Force Civil 

Engineer Center, 2017a).  This retrofitting of existing infrastructure will culminate at the 

end of FY20 by deploying advanced meters on 42 bases (Office of the Assistant 

Secretary of Defense for Energy Installations and Environment, 2016b). 

Advanced meters are also required on all newly constructed facilities and repair 

projects (MILCON, ERCIP, ESPC and FSRM projects) with few exceptions.  Those 

meters must communicate with that services’ meter program, making them advanced 

meters (Department of Defense, 2014).  The DoD directs services to use five percent of 

annual energy usage as a cost saving factor to identify cost effective advanced meter 

placement; if the meter is not cost effective, it will not be required (Department of 

Defense, 2013).  If meters are not cost effective, then the program is missing a major 

motivation for installing AMI which is reducing facility expenditures. 

The DoD’s estimate of five percent cost savings is very conservative and could be 

restricting the full potential of the AMI.  AFCEC reports that up to five percent savings 

can be realized by simply increasing the occupant’s awareness with mock energy bills.  



www.manaraa.com

23 

 

AFCEC even reports savings of 15 to 45 percent by continuously commissioning and 

evaluating facility energy (Air Force Civil Engineer Center, 2017a).  The U.S. Army 

even reported a cost savings of 60 percent in a single facility because of the identification 

of simultaneous heating and cooling in a facility (Parker et al., 2015).  The DoD’s 

Environmental Security Technology Certification Program (ESTCP) commissioned a 

report that found energy efficient projects resulting in 14 percent energy reduction could 

be identified by using hourly data from advanced meters alone.  This was proven using 

5.5 million square feet of DoD buildings (Shah, 2014).  The Department of Energy also 

reported 3 other projects that reported anywhere from 10 to 20 percent energy reduction 

through the use of advanced metering (Parker et al., 2015). 

Advanced meters are not always seen in the best light.  One issue is the cost to 

install, maintain and operate the advanced meters and the AMRS.  The AFCEC AMRS 

Chief Program Officer reported that individual meter installations could cost anywhere 

from 12.5 thousand dollars to 50 thousand dollars (Carnley, 2017).  Additional funds 

must be used to operated and maintain these systems to keep them current and functional.  

Operations and maintenance costs of these advanced meters are estimated at 300 dollars 

per year, but the true value will become more apparent and accurate as the AMRS 

continues to be deployed in the military (Air Force Civil Engineer Center, 2017a).  Data 

storage is also a vital piece of operating the AMRS.  Zhou et al. describe how data from 

advanced meters can grow to overwhelming levels.  They point out that one million 

meters reporting at 15-minute intervals (the Air Force standard) in a single year will 
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produce 2920 Terabytes of data (Zhou, Fu, & Yang, 2016).  In the Air Force MDMP it 

makes no mention to the plan for data storage, but does claim that in 2015 the Air Force 

operated 13 thousand advanced meters, prior to the AMRS rollout (Department of the Air 

Force, 2017a).  At these levels, the Air Force would collect approximately 40 Terabytes 

every year.  This amount of data requires special systems to handle and store the data.  

Not all of the 13 thousand meters can be converted for use on the AMRS and it is unclear 

how many will be converted.  However, the amount of data will continue to grow from 

these advanced meters as they are installed at the 42 bases chosen for the AMRS initial 

roll out and as facilities are constructed and repaired across the Air Force. 

Another possible issue is the failure rate of the advanced meters.  A study of PV 

solar implementation showed that the electrical meter was the cause of one percent of all 

PV failures.  The study had 350 individual PV systems with over 3500 failures in a 27-

month period (Formica & Pecht, 2017; Golnas, 2012).  Unlike PV failures, broken 

advanced meters will not cause a facility to lose access to power.  Broken meters that do 

not communicate with the AMRS only cause holes in the energy usage data.  However, 

holes in the data are nontrivial.  An ESTCP project recommended the DoD to implement 

better procedures to eliminate these holes because they greatly affect the usefulness of 

meter data while completing an energy audit (Shah, 2014).  A broken meter could also 

mask an outage event or other power quality issues.  The Pecan Street Data Director 

claims that approximately only one percent of the NULLs or zeros in their 1,300-home 

dataset of minute by minute data can be attributed to a utility wide outage.  The other 99 
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percent of the NULLs or zeros could be a mixture of small distribution sized outages, 

transformer failures, meters being unplugged, and broken meters (Fisher, 2017).  Similar 

to the operations and maintenance, actual failure rates will be understood as more and 

more meters are installed. 

Other issues not examined in this thesis include worries of invasion of privacy 

surrounding advanced meters.  Fortunately, these privacy issues do not exist in the 

military as transparency and proper stewardship is demanded of the government.  Rather 

cyber security is arguably the largest issue surrounding AMI deployment (Air Force Civil 

Engineer Center, 2017a).  The DoD requires the military services to implement AMI 

without compromising the DoD network or leaking power usage information for sensitive 

missions—a task that is difficult to define and continues to change day by day 

(Department of Defense, 2013). 

Even with of the above named issues, advanced meters have the ability to report 

more than just energy usage, making them a force multiplier.  Air Force Pamphlet 32-

10144, Implementing Utilities at U.S. Air Force Installations, highlights the fact the 

“energy data systems” should be used to generated cost savings by identifying equipment 

to replace (Department of the Air Force, 2016b).  This idea may be applied to facilities 

and infrastructure as well, if correctly used.  Advanced meters also have the possibility of 

be used to understand the absence of energy.  Lawton et al. emphasized the importance of 

knowing exactly when and for how long outages occurred as they would affect the 

economic and monetary impact of the loss of power (Lawton, Sullivan, Liere, & Katz, 
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2003).  “Last Gasp” messages are used by most AMIs to communicate real time electrical 

outage occurrences.  It is called Last Gasp because meters—and their accompanying 

communication systems—are powered by the same electricity that it is measuring and 

when the power goes down, the meter has to send the Last Gasp message prior to losing 

power (National Electrical Manufacturers Association, 2017).  Tram explicitly states that 

commercial power companies rely on these Last Gasp messages to improve their power 

quality and reduce operations cost associated with outages (Tram, 2008).  The U.S. 

Department of Energy created a design guide for these Last Gasp messages, in which 

they explain that communication becomes backlogged and unusable when a large number 

of meters are all sending their Last Gasp messages at the same time during a massive 

outage event (The Department of Energy Office of Electricity Delivery and Energy 

Reliability, 2010).  The exact source of the failure will still be found while manually 

troubleshooting the fault and bring the power back on.  This does not mean the limited 

data collected during the communication backlog is useless, but rather could still have a 

story to tell.  By collecting Last Gasp messages, information on when and how long these 

outages are occurring can be archived and analyzed to identify problem areas of the base 

grid. 

In some cases, Last Gasp messages are not used for electrical meters.  If that is the 

case, it makes locating outages harder because there is no clear indication that electricity 

is not flowing when looking at the dataset.  One strategy could be looking at a dataset for 

areas of zero reported energy usage.  This is not completely accurate because the zeros in 
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the dataset could also be from other malfunctions in the energy meter, as described above 

in this section (Fisher, 2017).  If the assumption was made that something went wrong 

with the meter or facility, including the possibility of an outage, then one could begin to 

analyze the data.  Any electrical consumer, residential or commercial, will see a constant 

leak of electrical energy due to modern-day electronics.  In a report created by the 

Lawrence Berkeley National Laboratory for the California Energy Commission, Meier et 

al. show that in some cases 13 percent of all energy usage is due to this constant leak 

caused by electronics in “low power” or “sleep” modes that are constantly draining as 

long as they are plugged into a wall (Meier et al., 2008).  Anything plugged into a 

convenience receptacle, or wall plug, that is either turned on or off has the potential to 

draw some small amperage.  That small amperage can be measured and stored any 

energy meters, thus showing periods of time with low energy usage.  Because of this, it is 

assumed that an outage or malfunction occurs when there is a zero in an energy usage 

dataset for occupied buildings. 

Past outages or malfunctions can be identified if Last Gasp message are not used 

by looking at historical data if the following conditions apply:  

(1) the meters have an auxiliary power source to enable communications and 

measurement in the absence of power or the dataset stores NULL or zero values 

when disconnected from the energy meter,  

(2) the meters are correctly communicating energy usages over their prescribed 

intervals, and  
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(3) broken or inoperable meters are clearly identified in the dataset.   

The Unified Facilities Guide Specifications (UFGS) are followed and used in all military 

projects to define what exactly is required when facilities are constructed or repaired.  

UFGS 26 27 13.10 30, Electric Meters, defines 15 minutes to be the standard interval 

with which the energy usage is to be reported on advanced electrical meters (Air Force 

Civil Engineer Center, 2017d).  The Department of Energy also recommends a 15-minute 

interval for “energy system diagnostics” but also states “shorter intervals for end use 

diagnostics” and “as frequent as required” to enable some flexibility in implementation 

(Parker et al., 2015).  It is unclear if a 15-minute data interval is too long or too short to 

be effective at pinpointing outages if the above three conditions exist. 

2.6 Electrical Outages 

As required by 10 U.S.C. §2925, the DoD is required to report utility outages 

(electricity, water or gas) lasting longer that eight hours to Congress (The United States 

Congress, 2017b).  As reported in the previous five AEMRs, the DoD experienced 

multiple utility outages as seen in Figure 4 (Office of the Assistant Secretary of Defense 

for Energy Installations and Environment, 2014, 2015, 2016b, 2017).  The interesting 

spike in FY16 was attributed to including, for the first time, outages that were mitigated 

by backup systems or generators. (The United States Congress, 2017b).  These outages 

cost the DoD upwards of half a million dollars per 24-hour period due to fuel costs or 

downed operations (Office of the Assistant Secretary of Defense for Energy Installations 

and Environment, 2017).  The data obviously does not capture everything; specifically 
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not reporting any outages less than eight hours.  In a report commissioned by the Pew 

Charitable Trusts, Marqusee et al. emphasis the importance of understanding the real 

outages that are occurring on military bases.  They highlight the limited outage 

information in the AEMR, but also looked at reliability metrics of the utility providers for 

the 30 largest military installations and maintenance logs from the Navy.  They make the 

claim that there are many outages that are not being captured by the current business 

rules and that reliability and availability on military installations could be and is worse 

than reported (Marqusee et al., 2017). 

 

Figure 4. Number of DoD Outages Lasting Longer than 8 hours by Year 

Current outage detection in the academic and private sectors is accomplished by 

using many different advanced technology and techniques.  In a review of fault detection 

techniques, the definition of a fault is given as “an unpermitted deviation from its 

standard operating conditions” (Gururajapathy, Mokhlis, & Illias, 2017).  These “faults” 
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create outages and disrupt the flow of electricity to the end user.  Jamali and Bahmanyar 

investigated previous fault/outage identification processes.  They claim the majority of 

processes rely on measuring current at multiple locations in a grid.  Their processes use 

voltage measurements at sectionalizers, re-closers and at other electric distribution 

infrastructure (S. Jamali & Bahmanyar, 2016).  Using specially configured advanced 

meters is vital to their processes.  Menchafou et al. theoretically showed that outage 

physical location could be found using voltage sag by measuring voltage and amperage at 

substations (Menchafou, Youssef; Markhi, Hassan; Zahri, Mustapha; Habibi, 2015).  This 

measuring would be done by advanced meters.  Bahmanyar et al. show a way to 

autonomously locate and restore power to “healthy” sections of a distribution network.  

Their processes require “voltage and current measurements at the head of main feeder 

and the magnitude of voltage sags recorded at some nodes equipped with voltage 

measurements, such as power quality meters or digital fault recorders” (Alireza 

Bahmanyar et al., 2016).  Power quality meters meet the requirement described by 

AFCEC’s Class I Meters (Air Force Civil Engineer Center, 2017a; Department of the Air 

Force, 2017a).  In another paper, Jamali, Bahmanyar and Bompard, developed an 

algorithm for finding fault locations using only a limited number of advanced meters 

located at substations and a few additional points in the distribution.  Their algorithm 

requires near real-time measurement, something AMRS has the ability to do but is not 

mandated (Sadegh Jamali, Bahmanyar, & Bompard, 2017).   
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Outage recording at the Air Force level is improving and exceeding the eight hour 

outage reportable limit, but is not on par with the academic and private sectors.  AFCEC 

has begun to use a reporting system to make outage reporting easier and more accurate.  

The system is called the Utility System Outage Reporting and Tracking (USORT) Tool 

(Watley, 2017).  The tool will allow operators and engineers to report utility outages and 

categorize them for improved analysis efforts.  As described by Chen et al. outage 

detection and management is accomplished by many different sources of data (Chen, 

Dokic, & Kezunovic, 2014).  Solely relying on advanced meter data will not tell the 

whole picture, but the addition of USORT tool is a step in the right direction. 

Ernest Orlando Lawrence Berkeley National Laboratory, under a U.S. Department 

of Energy contract, investigated the monetary effects of outages on commercial and 

residential facilities. This economic investigation into energy reliability concluded that an 

outage could cost upwards of 80 thousand dollars per hour, or two million dollars for 24 

hours, for large commercial businesses (Lawton et al., 2003).  Compared to the daily rate 

of the DoD of 500 thousand dollars, this drastic difference may imply that the 

government is undervaluing their operations.  Lawton et al. developed their numbers 

from 24 datasets from the 1990s and early 2000s, thus under reporting the economic 

impact in the current value of the dollar.  Sullivan and Kean point out the dichotomy 

between customers that want cheap electricity without regard to the quality of power 

verses customers who put a  on power quality and are willing to pay for the increased 

reliability (Sullivan & Keane, 1995).  The DoD wants and is willing to pay for the 
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increased reliability.  Outages can be avoided and reliability increased with better asset 

management of electrical infrastructure; over 40 percent of outages are caused by 

equipment failure in the DoD (Office of the Assistant Secretary of Defense for Energy 

Installations and Environment, 2017).  Paying this “premium” will avoid the high cost of 

operating without power. 

The Institute of Electrical and Electrical Engineers (IEEE) defines standards for 

electrical distribution systems in the U.S. through Standard 1366, IEEE Guide for 

Electric Power Distribution Reliability Indices.  These standards of electricity reliability 

for private utility companies were defined and explained further in a report also 

completed by LaCommare and Eto of the Lawrence Berkeley National Laboratory.  They 

define three important metrics; Momentary Average Interruption Frequency Index 

(MAIFI), System Average Interruption Duration Index (SAIDI) and System Average 

Interruption Frequency Index (SAIFI).  MAIFI is a measurement of interruptions lasting 

less than five minutes in duration (K. H. LaCommare & Eto, 2004).  These momentary 

“blips” in the system can have far reaching and serious effects; Ms. Ballentine 

emphasizing this issue through a story about the energy dependence Unmanned Aerial 

Vehicle operations in her address to the Pew Charitable Trusts (Pew Charitable Trusts, 

2017).  SAIDI is a measure of the average amount of downtime that each customer will 

experience in a given year as seen in Equation 1. 

𝑆𝐴𝐼𝐷𝐼 =  

𝑆𝑢𝑚 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 (𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑) 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑠𝑒𝑟𝑣𝑒𝑑
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Equation 1. System Average Interruption Duration Index (K. H. LaCommare & Eto, 

2004) 

SAIFI is similar to SAIDI but instead counts the frequency of times that there is 

an interruption in power supply as seen in Equation 2.  MAIFI is an event less than five 

minutes and SAIFI is everything longer than five minutes. 

𝑆𝐴𝐼𝐹𝐼 =  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 (𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑)

𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑠𝑒𝑟𝑣𝑒𝑑
 

Equation 2. System Average Interruption Frequency Index (K. H. LaCommare & Eto, 

2004) 

These interruptions are defined as, “The total loss of electric power on one or 

more normally energized conductors service” and does not include “power quality issues 

such as: sags, swells, impulses, or harmonics” (Institute of Electrical and Electronic 

Engineers, 2012).  Collection of these metrics are regulated by state Public Utility 

Commissions (PUC).  In 1998 Warren et al. performed a survey of private utilities to 

investigate the usage of IEEE’s standards for distribution reliability and how they are 

being implemented.  This study found that standards were not being followed.  Many 

inconsistencies made the metrics useless for comparisons across the nation and additional 

guidance was required from the IEEE (Warren, Pearson, & Sheehan, 2003).  The IEEE 

did and continues to update Standard 1366 for those reasons, but PUCs are responsible 

for enforcing the IEEE standards.  Eto and LaCommare tracked PUCs to see how these 

state commissions were using the reliability data.  They reported in 2008 that 35 of the 51 
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(50 states and Washington D.C.) vPUCs required routine/annual reliability reports using 

SAIDI and SAIFI which was improvement from 10 PUCs in 2004.  Additionally only 

two PUCs and 12 of the 123 used the MAIFI metric for momentary interruptions (Eto & 

Lacommare, 2008).  In 2016 LaCommare et al. continue to report that there are 

inconsistencies with reporting but that the addition of the Department of Energy’s Energy 

Information Administration and their Form 861 has greatly improved these 

inconsistencies (K. LaCommare et al., 2016). 

The Pew Charitable Trusts evaluated the private utility’s energy reliability of the 

30 largest military bases between 2013 and 2014 using SAIFI and SAIDI metrics.  This 

investigation showed that on average, each of the 30 bases experienced one major power 

outage lasting seven hours.  While SAIFI and SAIDI do not describe the exact time of 

day or part of the year these outages occur, they do help leaders understand the 

vulnerabilities that are realities on military installations. 

One solution offered back in 2000 by Krajnak showed the usefulness of faulted 

circuit indicators (FCIs).  He states the FCIs reduce the time that repair crews spend 

locating the cause of an outage (Krajnak, 2000).  The function that FCIs perform can be 

performed by advanced meters.  This research of FCIs and their placement continues 17 

years later with Li et al. showing that the placement of these meters can be optimized to 

pinpoint locations of outage causing faults (Li, Chen, & Guo, 2017).  This research does 

not comment on the physical location of the outages, but rather the process of identifying 

their duration and time in historical datasets.  Krajnak also states that the FCIs can help 
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identify “problem areas” for future modernization (Krajnak, 2000).  Identification of 

problem areas is something the DoD could use to influence the funding of infrastructure 

modernization projects. 

Whether reporting outages using the current DoD business rules or the IEEE 

Standard, the main issue continues to be accurately determining, reporting, and collecting 

the correct data.  The DoD could adopt the refined procedures used by the Department of 

Energy to better report energy quality.  The true number of outages, at any duration and 

not just those over eight hours, is obviously some number larger than that which is 

indicted to Congress.  The impact of these shorter outages will not be understood without 

a mandate or directive to collect this information.  Using advanced meters could automate 

this reporting and decrease the uncertainty surrounding the true status of the DoD’s 

energy usage. 

2.7 Upgrade Infrastructure 

In a study commissioned by the Assistant Secretary of Defense for Installation 

Energy, the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) created 

a Matlab based tool to analyze the electrical reliability of a military installation in order 

to “develop the business case framework to support budget and alternative financing 

decisions” (N Judson et al., 2016).  Their technical report investigated the way the 

military currently manages installation energy at four different bases on each of the four 

military service components.  A finding in the report, which was reiterated in an 

interview with the author, pointed to the fact that the military does not keep the correct 
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reliability metrics data to fully implement their developed tool.  The recommendations to 

rectify these issues included: 

1. Collect Data on actual electrical, heating and cooling loads for critical 

missions and how those loads vary throughout the day, week and year 

2. Track performance data (hours run, failure rates, and maintenance logs) for 

energy generation in a central electronic database 

3. Track existing electrical distribution system outages in a systematic way (N 

Judson et al., 2016; Nick Judson & Pina, 2017). 

This data is not only important to the MITLL reliability tool but also to designing 

and operating Net-Zero Buildings and Microgrids (Booth, Barnett, Burman, Hambrick, & 

Westby, 2010; CH2MHILL & Clark-Nexsen, 2016).  

According to Ersoz and Colak, using deterministic methods for evaluating the 

optimum Combine Cooling, Heating and Power (CCHP) implementation is difficult and 

ineffective due to the number of unknowns and high number of uncertainties (Ersoz & 

Colak, 2016).  CCHP is a high efficiency system where electrical power and cooling is 

produced and the waste heat is re-used.  Ersoz and Colak show that deterministic 

methods that rely on definite information fail because parameters change or are unknown.  

Applying probabilities with sensitivity analysis creates a better understanding of the risks 

involved for the decision maker in this complex investment (Ersoz & Colak, 2016).  

Applying this approach of stochastic decision making to any type of infrastructure 
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upgrade can prove to be invaluable in current Air Force funding models.  Meter data can 

provide the basis for the application of these stochastic models. 

2.7.1 Net Zero Buildings 

Brost researched the implementation of Net-Zero Buildings (buildings that 

produce as much power and/or water that they use) on Air Force installations.  In 

commenting on the current application of advanced meters in Net-Zero Buildings, Brost 

stated, “As Smart Grid technologies increase, Advanced meters will be incorporated 

which allow for more efficient management of the grid” (Brost, 2013).  Fort Carson is 

one of the Army’s premier locations for their Net-Zero Installation initiative.  In Fort 

Carson’s Final Environmental Assessment, the Army stresses the need for having energy 

meters to properly assess their energy usage, including electrical energy.  A follow-on 

objective is to implement a microgrid on the installation for the purpose of “energy 

surety” (Department of the Army, 2012). 

A technical report written by the National Renewable Energy Laboratory (NREL) 

highlights the usefulness of advanced meters in modernizing electrical infrastructure 

through Net Zero energy application on military installations.  It states the recommended 

approach to sizing and completing a successful electrical design is to collect hourly load 

data at the facility or substation level.  Additionally, the report recommends that five 

years of data be kept for all important facilities (Booth et al., 2010).  This data can be 

collected and stored through the Air Force’s AMI and AMRS. 
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2.7.2 Microgrids 

The Department of Energy defines a microgrid as “a local energy grid with 

control capability, which means it can disconnect from the traditional grid and operate 

autonomously” (Department of Energy, 2014).  Similarly, the Energy Independence and 

Security Act in 2007 defines a microgrid as “an integrated energy system consisting of 

interconnected loads and distributed energy resources (including generators and energy 

storage devices), which as an integrated system can operate in parallel with the utility 

grid or in an intentional islanding mode” (The United States Congress, 2007). 

Microgrids appeared in three of 11 energy and sustainability presentations at the 

2017 Society of American Military Engineers’ (SAME) Joint Engineer Training and 

Conference (Society of American Military Engineers, 2017).  The private industry has 

proven microgrids work and their use is broad and very applicable to the military 

(Department of Defense, 2015c; Morgan, Valentine, Blomberg, Limpaecher, & Dydek, 

2016; Van Broekhoven, Judson, Nguyen, & Ross, 2012).  In a study of Urban 

Microgrids, MITLL highlights 11 facilities in New York City that were able to continue 

operation during Superstorm Sandy due to their microgrids.  They state, “Microgrids can 

be leveraged to maintain normalcy during major catastrophes” (Morgan et al., 2016).  

This normalcy is critical to military operations, especially during times of major 

catastrophes and during sudden electrical grid failure.   

The level of reliability available from microgrids fits in well with the DoD’s 

Operational Energy Strategy Objective of “Enhancing current mission effectiveness” 
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where the priority is given to initiatives that improve “robustness and flexibility of the 

energy supply chain” (Office of the Assistant Secretary of Defense for Energy 

Installations and Environment, 2016a).  This same operation strategy is mirrored in the 

DoD’s use of the Strategic Sustainability Performance Plan (SSPP) for the department’s 

management of infrastructure.  The SSPP guides fiscally minded DoD-wide decisions to 

ensure the “continued availability of critical resources” including facility energy 

(Department of Defense, 2016b).  Inadvertently the DoD has pointed towards microgrids 

as a possible solution in their strategic documents. 

To help reduce the confusion and direct the excitement about microgrids, the 

Naval Facilities Engineering Command (NAVFAC) developed the Microgrid Design and 

Reference Guide (CH2MHILL & Clark-Nexsen, 2016).  This document provides a guide 

for Navy engineers to follow to implement and construct microgrids on their installations.  

A key requirement in the design of a microgrid is identifying requirements and gathering 

background information.  Specifically highlighted in the guide is the use of advanced 

meters data to understand the site electrical load including time-based full, peak, average 

and minimized load (CH2MHILL & Clark-Nexsen, 2016).  The IEEE Standard 1547.4, 

Guide for Design, Operation, and Integration of Distributed Resource Island Systems 

with Electric Power Systems, agrees with the NAVFAC guide in the load considerations 

section and the call for better energy usage data.  It states that when sizing a distributed 

resource island system, like a microgrid, having historical demand profiles are important 

for times throughout the day, week or season (Institute of Electrical and Electronic 
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Engineers, 2011).  This data can be collected and stored through the use of advanced 

meters. 

The U.S. Department of Energy worked in tandem with many other nations in 

Europe and Asia to help progress microgrid technology.  Eight of the nine microgrid 

projects in Japan between 2003 and 2013 have advanced meters (Ton & Smith, 2012)  

MITLL completed a technical report for the DoD on the application of microgrids on 

military installations.  The report highlights the work of Naval Support Facility Dahlgren 

by implementing a three phase approach to installing a microgrid; the first phase being 

data collection with advanced meters (Van Broekhoven et al., 2012).  With data from 

advanced meters, a more informed decision can be made about what specific equipment 

and facility upgrades can be cost effective and impactful.   

Van Broekhoven et al. also point out that understating the existing infrastructure 

is vital for successfully implementing a microgrid on a military installation.  They state, 

“In developing microgrid architectures, the DoD needs to be cognizant of the legacy 

infrastructure on each installation” (Van Broekhoven et al., 2012).  This understanding 

and information could come from objective advanced meter data.  As seen with Net-Zero 

Buildings and Smart Grids, meters play a large role in defining the bounds of a successful 

project or program (Booth et al., 2010; Software Engineering Institute, 2011). 

2.7.3 Smart Grid 

Smart grid application is another major electrical distribution modernization that 

can be completed on an Air Force installation.  A smart grid is a grid that uses “digital 
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technology for communications, monitoring (e.g., sensing), computation, and control” 

(Software Engineering Institute, 2011).  European policy experts point to technologies to 

reduce energy usage and smart grids were identified as one of the top five technologies 

for accomplishing this reduction in energy usage (Obrecht & Denac, 2016).  The 

Department of Energy funded the Software Engineering Institute (SEI) to create guidance 

on the creation of smart grids (Software Engineering Institute, 2011).  The SEI state that 

monitoring (e.g., sensing with advanced meters) is one of the four pillars of a smart grid.  

Without monitoring there is no control or feedback to how the smart grid is performing.   

2.8 Conclusion 

The Air Force continues to maintain operations on its installations through the 

funding of infrastructure projects to ensure uninterrupted ability to project military 

power.  Electrical outages are a huge concern of the U.S. Congress; they are looking for 

anything that can be done to reduce them.  Advanced meters are currently being deployed 

around the Air Force and their effectiveness is only beginning to be realized.  Their 

ability to positively affect asset management decisions is a resource the Air Force has yet 

to fully explore.  The current cutting-edge electrical distribution upgrades require 

advanced meters to be successful.  After investigating these topics, advanced meters can 

be seen as a vital tool to increase the resilience, availability and reliability of electrical 

power to Air Force missions.  
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III. Methodology 

3.1 Introduction 

Existing datasets were collected and analyzed to best answer the research 

questions proposed in Chapter 1.  These datasets were obtained through private and 

public organizations.  The data obtained was energy meter data for homes in Austin, 

Texas (referred to as the Pecan Street data) and facility energy usage on Ellsworth Air 

Force Base (AFB) in South Dakota.  Additionally, the Integrated Priority Lists (IPL), a 

project priority spreadsheet, from Fiscal Years (FY) 17 and 18 were obtained from the 

Air Force Civil Engineer Center (AFCEC).  Data was cleaned and analyzed using R, R 

Studio, and Matlab.  Programing codes were created by the researcher and obtained from 

the Massachusetts Institute of Technology Lincoln Laboratory (MITLL).  Computing was 

done on the researcher’s personal computer and government machines.  This chapter will 

outline the methodology and research approach. 

3.2 Data Resource 

The two sources of energy usage data used in this analysis are from Pecan Street 

and the U.S. Air Force.  Pecan Street is a consortium from the University of Texas at 

Austin which focuses on the reduction of energy and water usage.  They claim that in 

order to reduce energy and water usage, the information about how that energy is used is 

critical.  Pecan Street has over 1,300 volunteers that provide their residential energy 

usage (Pecan Street, 2017).  Data collection began in 2012 and has continued from that 

point.  Each volunteer has the ability to store up to 50 different recorder sources (for 
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example refrigerator, microwave, receptacles, etc.) of energy usage down to minute by 

minute time intervals.  Total energy usage was evaluated in this thesis.  This data was 

analyzed for patterns of electrical outages and used for sensitivity analysis of different 

data characteristics. 

Other data was received from many resources around the Air Force.  First, the 

IPLs for FY 17 and FY18 were obtained through discussions with AFCEC.  The IPL is a 

project priority listing of all of the FSRM projects (facility upgrades) required by the Air 

Force (Mills et al., 2017; Ramos, 2017).  The projects are ranked and funded according to 

condition and significance, as described in Chapter 2.  A greater understanding of how 

electrical distribution projects have historically scored in relation to other facility 

upgrades was obtained by reviewing the ILP.  This review was placed in Section 2.4.1. 

Ellsworth AFB in South Dakota has historical energy usage data of specific 

buildings on their installation.  This data was collected by electronic means with a one-

day interval.  Accompanying the meter data was Geographic Information System (GIS) 

data and real property data that describes the location and equipment characteristics.  This 

Air Force data was also evaluated against the Pecan Street data to validate its findings. 

3.3 Data Collection and Validation 

Data collection was accomplished through personal contact and through internet 

file sharing.  Meter data from Ellsworth AFB was collected through smart meters and 

stored in an Excel spreadsheet format.  GIS data was created by the Ellsworth Civil 

Engineers and is readable with ArcGIS, the Air Force GIS standard software.  This data 
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was received through the use of the Aviation and Missile Research, Development, and 

Engineering Center Safe Access File Exchange (AMRDEC SAFE) system.  Additional 

information and contacts were obtained via email.  Detailed IPL spreadsheets were 

received through the Air Force Civil Engineer Portal SharePoint after gaining access 

from AFCEC personnel.  Energy usage data from Pecan Street was received through the 

“Dataport” on the Pecan Street website and a Secure File Transfer Protocol (SFTP) setup 

directly with the University of Texas at Austin Database Manager through the computer 

program FileZilla.  Access was granted after proof was given that the researcher was a 

student.  Whether through email or online systems, existing raw datasets were collected 

and then validated prior to analysis. 

Techniques for evaluating the data followed past research.  Olive used meter data 

from Ellsworth and other Air Force bases to attempt to find correlations in building 

characteristics and energy usage (Olive, 2017).  Olive’s methodology of reading meter 

data was applied to avoid errors while performing analysis of the data.  In particular, 

Olive’s strategy for avoiding errors when meters “roll over,” data collection interval 

width manipulation, and removal of erroneous data was used (Olive, 2017).  Roll over 

errors occur if a meter has reached its limit of reportable integers and starts over counting 

at zero.  This only occurs if the meter is reporting cumulative energy usage.  Minimal roll 

over issues are expected with advanced meters, but could arise depending on the 

manufacture specification.  No roll over errors were experienced with Pecan Street data 

because the dataset reports exact energy usage and not cumulative energy usage.  Next, 
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Olive manipulated data collection interval widths of Ellsworth AFB data from daily 

intervals to monthly intervals by simply adding intervals together to reach the desired 

length.  Doing so she was able to compare the data with Tinker AFB which only had 

monthly intervals (Olive, 2017).  Finally, the removal of erroneous data was required 

because advanced meters do eventually fail, as proved by Golnas (Golnas, 2012).  Clean 

data means that analysis of outages and sensitivity analysis can be trusted with more 

certainty. 

Pecan Street data was used and is applicable to the purposes of this thesis.  Pecan 

Street data is very valuable because of its extensive size, interconnected relationship and 

extremely small data collection interval.  The data’s applicability to the Air Force as a 

whole may be questioned because the datasets are of residential energy usage.  While it is 

true that the usage, scale, and distribution are vastly different from industrial or military 

energy usage, Pecan Street is a real-world, naturally-occurring dataset that can be 

analyzed against itself.  Additionally, power companies supply electricity to Air Force 

bases and residential customers from the same power plants and similar distribution 

networks.  This means if an outage occurs on-base, depending on the system, off-base 

customers can feel the same effects.  For these reasons, residential data was extensively 

used in this thesis. 

3.4 Data Analysis Methods 

The analysis of the data relies on the understanding of two key terms: 

combination and interval (see Table 2 for their definition and examples).  Sensitivity 
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analysis was conducted by altering these two factors through the use of computer 

simulations and not through data collection.  The combination was varied by changing 

the size of the groupings that were used to find the mean energy usage.  The combination 

of data was not organic or specified by the dataset, but rather it was user defined.  The 

data collection interval was varied by amassing the dataset together which was given in 

one-minute intervals. 

Table 2. Data Analysis Key Terms 

 

Sensitivity analysis is, according to Saltelli et al., “The study of how uncertainty 

in the output of a model (numerical or otherwise) can be apportioned to different sources 

of uncertainty in the model input” (Saltelli et al., 2008).  For this analysis the “model 

inputs” were controlled by varying combination and interval.  The output measured was 

detection of outages with the associated errors.  The effects of having smaller and larger 

data collection intervals were evaluated against the 15-minute DoD standard for 

advanced meters (Air Force Civil Engineer Center, 2017d).  The data collection interval 

was varied from one minute (the smallest interval available through Pecan Street) to 1440 

Term Definition Example 1 Example 2 
Combination The grouping of energy usage 

measured by a meter from the 
same time period for a specified 
number of weeks for the purpose 
of finding a mean energy usage for 
the given period 

Two weeks' worth 
of energy usage 
from 1300hr to 
1310hrs, with a 
mean energy usage 
of 2.3 kWh 

13 weeks' (or ~four 
months') worth of 
energy usage from 
0830hrs to 900hrs, 
with a mean energy 
usage of 7 kWh 

Interval The width of time that a meter 
collects energy usage data prior to 
reporting to a data storage system 

1 minute intervals 
of energy usage 
for 01 Aug 2011 to 
31 Dec 2013 

15 minute intervals 
of energy usage for 
15 Oct 2013 to 01 
Jul 2015 
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minutes (or 1 day/24 hours) and evaluated all 36 mathematical factors of 1440.  

Alternatively, this concept can be thought of as varying the frequency of the data 

collection from once a minute to once a day.  This data was amassed, following Olive’s 

procedures, using the one-minute interval dataset and adding subsequent intervals to 

reach the desired interval width.  This data was then analyzed for outages or malfunctions 

in the meter—periods with no usage reported as a “0” in Pecan Street—and checked 

against known outages or malfunctions.  Each individual energy usage was measured 

against its specific mean energy usage to define a standardized distance, or standard 

deviation, from the mean. 

The analysis of outages used specified combinations of data to find a mean energy 

usage.  These groupings were 1, 2, 4, 13, 26 and 52 weeks (or the mathematical factors of 

52).  For combination of 13 and 26 weeks, seasonal effects to energy usage can be seen.  

To help explain this variance, these combinations begin on the 15th of April or a 3-month 

multiple of the 15th of April (e.i. 15th of July, October, and January).  Using the National 

Oceanic and Atmospheric Association’s published 30-year mean outdoor air temperature, 

the 15th of April was chosen because it is the midpoint between January and July, the 

coldest and hottest months, respectively (National Oceanic and Atmospheric Association, 

2018).  See Figure 5 for a visualization of the 30-year mean outdoor air temperature in 

the United States.  
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Figure 5. 30-Year Mean Outdoor Air Temperature (National Oceanic and Atmospheric 

Association, 2018) 

Outage detection was accomplished by using combinations of energy usage for a 

specific time of year and specific time period in the day.  Each individual member of the 

combination was then measured against the mean energy usage for that combination to 

create a standardized distance from the mean.  The standardized distance for known 
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outages/malfunctions were saved for each home in the dataset.  This can be done only 

when outages are known.  Without knowing when the outages occur, one could simply 

look for zeros in the dataset.  However, relying solely on counting reports of zero energy 

usage to detect outages is insufficient.  This is because outages can happen within the 

data collection interval, thus creating intervals with reduced energy usage.  This concept 

is illustrated in Figure 6.  The “Smallest” interval is the most accurate and robust.  The 

“Small” interval is twice the size of the “Smallest” interval, and so on.  It can be seen the 

“Largest” interval shows no visible signs of an outage.  By applying these statistics, the 

outages may be calculated.  The larger the distance from that specific time of year’s mean 

energy usage, the more likely that an outage occurred. 
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Figure 6. Example Outage vs Four Intervals 

Outages and malfunctions were assumed to be any reported energy usage of less 

than or equal to zero.  It is key to note that no verified outage information was obtained 

and the existence of the outage was assumed.  Outages and malfunctions lasting longer 

than one minute were found by counting the zero and negative values in the one minute 

by one minute raw dataset.  By using a dataset with these “known” outages and 

pinpointing their location, an ideal distance from the mean can be estimated by increasing 

the interval the data to mask those zeros/outages.  This ideal distance, defined in the rest 

of this thesis as the ideal critical value, is found by sorting data as seen in Figure 7.  First, 

critical values are determined for each individual Data ID.  Then, the ideal critical value 
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is chosen from the 88 critical values for each combination and interval.  Once the ideal 

critical values are determined, they can then be tested on a virgin dataset to evaluate its 

effectiveness at identifying outages.  Additionally, the number of weeks used in the 

combination to find the mean energy usage was also varied to ascertain the effects of 

grouping the energy usage differently.  

 

Figure 7. Infographic of How the Ideal Critical Value is Determined 

This Data Analysis is concentrated on confirming the hypothesis provided below 

for each data collection interval: 

Ho = No outage or malfunction occurred during the measured interval 

Ha = An outage or malfunction occurred during the measured interval 
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If the standardized distance from the mean is below the ideal critical value, as 

defined above, then the null hypothesis is rejected in favor of the alternative.  Therefore, 

this hypothesis is used to improve the effectiveness outage detection. 

Inherently, by using hypothesis testing, there arises the opportunity for errors.  A 

Type I Error occur when the null hypothesis is rejected in favor of the alternative 

hypothesis when the null hypothesis was correct all along.  Conversely, Type II Error 

occurs when the null hypothesis is accepted as truth, when really it should have been 

rejected in favor of the alternative hypothesis.  For this analysis a Type I Error, known as 

a False Positive, is where the model states there was an outage when really there wasn’t 

one.  A Type II Error, known as a False Negative, is where the model states that no 

outage has occurred when really there was one.  Figure 8 gives a visual breakdown of 

each situation possible for the hypothesis testing. 

 

Figure 8. Error Definitions 
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When measuring outage detection error, there is a distinction between an 

“identified” and “known” outage.  Identified outages are those intervals whose 

standardized distances, or standard deviations, from the mean energy usage are less than 

that of the ideal critical value.  Identified outages contain all Type I Errors and all true 

identified outages (the right two quadrants of Figure 8).  Known outages are only 

“known” because they are located in the model by highlighting zeros in the dataset prior 

to increasing data intervals.  Known outages include Type II Errors and true identified 

outages (the bottom two quadrants of Figure 8). 

In the real world Type I Errors would make an operator believe that their system 

is performing worse than it really is.  If they act upon information with Type I Errors they 

could be wasting money on a problem that doesn’t exist.  Type I Errors in this analysis 

are measured against identified outage to give a confidence of how many outages that 

were identified were actually true outages.   

Conversely, Type II Errors effect how confident an operator is that they have 

captured all of the true outages.  High Type II Errors mean an operator is not confident 

that all the outages have been captured or identified.  Type II Errors in this analysis are 

measured against known outages to illustrate how many outages are not being identified.  

In the real world, the existence of a Type II Error must be discovered or reported by some 

external means.  This would mean users reporting outages and operators verifying that 

outages have occurred; a process that has many opportunities to fail.  Also, electrical 

infrastructure has the ability to reset itself with reclosers, taking up to three minutes to 
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operate (Pereira, Pérez-yauli, & Quilumba, 2017).  These momentary outages could be 

lost if users do not detect and report them.  Additionally, for single facility outages, users 

could reset breakers if they have access to them and the information could be lost or not 

communicated that an outage had occurred. 

A Design of Experiments (DOE) gives the analysis validity.  The DOE began by 

using 20 percent of all of the possible homes, or 88 houses, in Austin, TX from the Pecan 

Street dataset.  These 88 homes were selected using a random number generator in excel.  

These homes amounted to 480 million data points.  R, with R Studio, was used to clean 

and analyze the data.  An additional 5 percent, or 22 homes, of the Pecan Street homes in 

Austin, TX were also collected and used to test the ideal critical values that were found 

by using the other 88 homes. 

This ideal critical value was also tested against the Ellsworth AFB energy usage 

data.  Data collected from Ellsworth AFB was given in cumulative energy usage.  This 

means energy usage was calculated by finding the difference from the previous energy 

usage.  Additionally, roll over error effected two of the 87 electrical meters reported.  

Because Ellsworth AFB is located in South Dakota and the ideal critical values were 

created using data from Texas, it is unclear if the ideal critical values will be effective.  

Another issue is that the Ellsworth AFB data was only given in daily energy usage 

intervals, making locating outages difficult and limiting validation of outages to only 

outages lasting longer than 24 hours.  Error information for locating outages was also 

collected for facilities that contained outages (zeros in the data). 
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Figure 9 shows the trade space for the sensitivity analysis of the data interval.  

The data becomes more robust and useful as the interval decreases, but not without a 

cost.  Data storage and handling, including transfer, becomes more difficult as the 

interval decreases.  Additionally, meters that can handle higher amounts of energy are 

more expensive (Carnley, 2017).  Less data handling and storage can be accomplished 

with larger intervals, thus reducing the required server sizes and saving money on 

acquisition costs, operations and maintenance of those servers.  With larger intervals, the 

granularity of the data is lost, thus making it less useful for understanding minute 

variations.  Aggregation of multiple facilities under a single meter was not looked at in 

this analysis, but it is also a key factor that effects the cost of the meter.  Currently, as 

described in Chapter 2, the AMRS uses 15-minute intervals and is used only for single 

facilities or single transformers (when a facility has more than one transformer). 
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Figure 9. Meter Configuration 

Once the above methods were used, an in-depth analysis of how to select the ideal 

critical values was conducted.  In the initial analysis, the 90th percentile of all the outages’ 

standardized distances were used to select the critical value.  This concept is illustrated 

on the left half of Figure 7, referred to as the “First Percentile.”  In this sensitivity 

analysis, the selection of the critical values were evaluated 10 different times for the 95th, 

85th … 15th, and 5th percentiles for each combination’s outage standardized distances.  In 

the initial analysis, the 90th percentile was also used to calculate ideal critical value from 

the critical values, as seen in the right half of Figure 7, referred to as the “Second 
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Percentile.”  This percentile was also altered in this sensitivity analysis in order to 

calculate the ideal critical value.  Again, the selection of the ideal critical values were 

evaluated 10 different times for the 95th, 85th … 15th, and 5th percentiles for each 

combination’s critical value.  All possible combinations were explored; a total of 100 

different ways to choose the ideal critical value.  Each of these 100 percentile 

combinations contain error information for locating outages.  As the percentiles go down, 

Type II Errors will increase and Type I Errors will decrease.  This will create a risk 

decision for which error to minimize.  Theoretically, the 95th percentile will find almost 

all of the outages, but it will also increase the number of incorrectly identified intervals as 

outages (Type I Errors).  Conversely, the 5th percentile will find less real outages 

(increase Type II Errors) but it will also decrease the number of incorrectly identified 

intervals as outages.  There was a percentile with the least number of total errors (Type I 

and Type II Errors combine), but the specific type of error must not be overlooked. 

An additional sensitivity analysis was conducted on the Matlab tool developed by 

the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Energy Systems 

Group.  The change in recommended electrical system architectures were recorded and 

analyzed while varying the number of reported outages for a single year by altering the 

System Average Interruption Frequency Index (average number of outages in a year).  

Additionally, the unserved load for each architecture was also analyzed for the different 

reported outages.  MITLL stated their largest issue was valid outage data (Nick Judson & 

Pina, 2017).  The sensitivities of the tool can be seen by simulating improved outage data 
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or in other words the outage collection effectiveness.  This was simulated by comparing 

the current Air Force Standard of 15-minute data collection intervals and the currently 

available 1-day intervals to a one-minute data collection interval.  As described in 

Chapter 2, the Air Force only collects outages lasting longer than 8 hours.  The 

assumption is made that the methods outlined in this thesis were used to collect outages; 

all outages including those less than 8 hours.  By comparing the system architectures, 

with their accompanying amount of unserved load, the risks of using a 15-minute or 1-

day interval can be seen against using a one-minute interval. 

3.5 Data Processing 

All figures for this section will be found in Appendix 1 because of their size.  R, 

with R Studio, was used to process the data.  There were two major phases in the 

programing: Model Building and Model Validation.  Figure 41 shows the conceptual 

flow of the Model Building code.  This model sets the framework for the validation of the 

data processing, as seen in Figure 42.  Aggregation of multiple buildings on a single 

meter was not looked at in this thesis, but Figure 43 gives a concept of how it could be 

done. 

All data from Pecan Street are first read into the program.  The raw data has 3 

columns: Time (with day, month, and year), energy usage (in units of average kW over 

the one minute data collection interval), and Data ID (or the specific home in the dataset) 

(Pecan Street Dataport, 2017).  While it is true that a kW is a measure of power, it can be 
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classified as energy usage because the time period over which the average power 

occurred is given.   

The Model Building code takes each individual Data ID and runs the process 

outlined below.  The data must be cleaned for errors by placing the data in chronological 

order, removing duplicate entries, removing “NA” values, and making all negative 

energy usage equal to zero, thus treating them as an outage/malfunction.  The code finds 

the first full day of data and then replaces any chronological gaps in the data with zeros, 

again treating them as an outage/malfunction.  The outages/malfunctions are then located 

by searching for zeros and their locations are saved for use later in the code.  The code 

then runs another loop for the 36 different possible data collection intervals as described 

in the previous section.  The data collection interval is simulated by adding the next 

minute’s worth of data to the first minute’s worth of data until the desired data interval 

width is reached.  The code will then enter the final loop for each of the six different 

possible data combinations, as described in the previous section.  The code groups the 

data by the desired combination and then finds that specific time of year’s mean energy 

usage.  Next, the code finds the standardized distance from the mean for all of the 

outages/ malfunctions according to its specific corresponding mean.  These values are 

defined as “z-scores” in the code.  These z-scores are then placed in descending order to 

locate the 90th percentile of all z-scores for that specific Data ID, interval, and 

combination.  This value is defined as the “critical value” in the code because 90 percent 

of the other z-scores are at or below this value.  All other values, regardless of if it was an 
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outage/ malfunction or not, are also checked against their specific corresponding means.  

Outages/malfunctions can then be predicted by defining all data below or at this critical 

value as an outage or malfunction. 

This process will repeat until all Data IDs have been evaluated.  With all 88 Data 

IDs complete the ideal distance from the mean, defined as the “ideal critical value,” can 

be estimated by finding the 90th percentile of all critical values by interval and 

combination.  This ideal critical value is the ninth largest critical value of the 88 different 

Data IDs test (90 percent of 88 rounded up is 80).  This value can theoretically locate 90 

percent of the outages in any other data set.  To test this hypothesis another virgin dataset 

was tested using these ideal critical values. 

The Model Validation follows a similar process to the Model Building phase.  

The ideal critical values from the Model Building are the only data used in the Model 

Validation phase.  Again, the data must be cleaned and outage location is stored in order 

to gauge the effectiveness of the ideal critical values.  Additionally, the data collection 

interval and the combination are varied.  All values are measured against their own 

specific time of year’s mean energy usage to determine the standardized distance from 

the mean.  With the ideal critical values already predetermined, the standardized 

distances can be placed in one of the four quadrants defined in Figure 8: good match 

outage (true negative), good match no outage (true positive), Type I Error (false positive), 

and Type II Error (false negative).  This will be the true measure of the effectiveness of 

the ideal critical values. 
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The aggregation data processing could done by following both the Model 

Building and Model Validation exactly the same except for adding an additional step.  

This additional step is the aggregation of energy usage data from different homes.  It is 

vital that the aggregation is performed using the exact same timetable to account for 

variation in energy usage due to weather, holidays or any other global event that could 

affect energy usage.  Once the ideal critical values are calculated and they are validated 

against the virgin dataset, the effectiveness of the ideal critical values are again measured 

using the four quadrants defined in Figure 8.  
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IV. Analysis and Results 

4.1 Introduction 

Many in-depth topics emerged and were included after applying the research 

questions in Chapter 1.  The analysis was complete using R, R Studio, and Matlab.  

Sensitivity analysis was performed to optimize solutions and expound on relevant 

questions.  First, the basis of the analysis was the use of Pecan Street data to see if 

locating outages using advanced meters can be accomplished by using means and 

standard deviations of combined data.  All other analysis builds off of these initial 

findings.  Next, locating the outages was conducted using aggregated data (see Table 2).  

After that, the findings from the Pecan Street analysis were applied to Ellsworth Air 

Force Base (AFB) to measure applicability of the methods to Air Force data.  Then, the 

Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Tool was used to 

compare different data collection intervals and their effect on selecting electrical system 

architectures.  Finally, a critical review of the electrical projects was conducted on the 

Integrated Priority List (IPL). 

4.2 Pecan Street – Proof of Concept 

Meticulous data processing was vital to ensuring the proper data was being saved 

and operated upon.  The Pecan Street one-minute interval data was analyzed as described 

in Chapter 3.  The model building was complete on 88 homes from Austin, TX.  With six 

different possible combinations and 36 different possible intervals, there were 216 

different “Ideal Critical Values.”  These ideal critical values were found by, first, taking 
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the 90th percentile for the critical values for each Data ID, interval, and combination 

(known as a critical value).  Next, the 90th percentile of all 88 Data IDs’ critical values for 

each interval and combination to find the ideal critical value.  These ideal critical values 

can be seen in Figure 10. 

 

Figure 10. Ideal Critical Values for each Combination and Interval 
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With the model building complete, the ideal critical values can be tested against a 

virgin validation test dataset of 22 homes.  Again for each combination and interval, the 

minute by minute data is transformed to the correct interval width and tested against the 

ideal critical value.  Errors, as described in Figure 8, are calculated to examine the 

effectiveness of the ideal critical values at pointing out the outages.  Figure 11 shows the 

overall effectiveness of the model.  It is important to note that the x-axis is on a custom 

scale reporting the actual intervals used (e.i. it is not a log or normal scale).  This figure 

says, unconditionally, we can trust the results of the model X percent of the time.  The 

52-week combination, or annual combination, and the 26-week combination, or bi-annual 

combination, clearly out perform all other combinations as seen in Figure 11.  Using a 

combination of 52 weeks and a 12-hour interval in Austin, TX proves to be the most 

reliable of the six combinations and 36 intervals investigated in this part of the analysis.  

This particular interval and combination was correct 98.4 percent of the time.  The 1.6 

percent that was incorrect can be accounted to either Type I or Type II Errors. 
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Figure 11. "Good Match" vs. Total Sample Space for each Combination and Interval 

Further analysis of the errors is required because Type I and Type II Errors have 

different impacts on real world outage detection and advanced meter operations.  Type II 

Errors are known outages that had a standard deviation higher than the ideal critical 

value.  Due to this, they are labeled as “good” intervals when really an outage has 

occurred (known as a false negative).  Type II Errors were very small compared to Type I 
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Errors (compare Figure 12 to Figure 13).  There is also no clear distinction between any 

of the combinations, but the errors increase as the interval increases. 

 

Figure 12. Type II Errors vs. Known Outages for each Combination and Interval 

Type I Errors are measured against identified outages to give a confidence of how 

many outages that were identified are actual true outages.  Unlike Type II Errors, Type I 

Errors have a stratification and clear best combination for most intervals as seen in Figure 
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13.  The Type I Errors vary from interval to interval and do not have the clear pattern that 

the Type II Errors have. 

 

Figure 13. Type I Errors vs Identified Outages for each Combination and Interval 

Each Data ID was effected differently by the ideal critical values.  Figure 13 

shows each individual Data ID from the virgin dataset and how many errors are found for 

all possible intervals.  It shows that some Data IDs are not effected at all by errors while 
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others account for a large portion of total errors.  It is also important to note that both 

Type I and Type II Errors are graphed together and in no case are Type II Errors visible 

clearly showing that Type I Errors dominate in this analysis.  This finding sparked 

another analysis for looking at the sensitivities of the ideal critical value (see section 4.3 

Pecan Street Ideal Critical Value Sensitivity). 

 

Figure 14. Pareto Chart of Errors by Data ID for all Interval 
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Figure 15 was used to observe if a trend exists between how many years’ worth of 

data was used and errors in the different Data IDs.  No clear trend can be seen.  The Data 

IDs are arranged in the same order as Figure 14.   

 

Figure 15. Amount of Data in Descending Total Error Order for all Intervals 
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As in Figure 15, Figure 16 was created to attempt to identify a trend between 

mean outage length and total errors observed errors.  Again, Data IDs are arranged in the 

same order as Figure 14 and there appears to be no clear trend. 

 

Figure 16. Mean Outage Length in Descending Total Error Order for all Intervals 

The findings from this part of the analysis were that, first, the 52-week and 26-

week combination, with the former being slightly better, performed the best for Type I 
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Errors as well as overall model effectiveness.  Second, all combinations perform similarly 

for Type II Errors.  Third, the number of Type I Errors is far greater than the number of 

Type II Errors.  And finally there is no clear trend between mean outage length or the 

amount of data to the amount of errors.  The R Studio raw code for this analysis can be 

found in Appendix 1. 

4.3 Pecan Street Ideal Critical Value Sensitivity 

This analysis was conducted because the ideal critical value is found using user 

defined parameters that were not optimized for performance, but rather just proof of 

concept.  In all other analysis to this point, the critical value was found using the 90th first 

percentile and 90th second percentile.  For this analysis, to calculate the individual Data 

ID’s critical value, the standardized distances from the specific mean energy usage for 

each outage were ordered and the given percentile was used to locate the critical value for 

each Data ID (see the left half of Figure 7).  Once complete, the 88 critical values for 

each combination and interval were ordered and the second percentile, used for finding 

the ideal critical value, was also varied (see the right half of Figure 7).  This amounts to 

100 different possible ways of selecting the ideal critical value.  Again these ideal critical 

values are tested against the same virgin data set as in previous sections. 

Figure 17 shows the 100 different Ideal Critical Values that were used in this 

section.  The values represented are the average value with one standard error for each 

percentile.  They are ordered by second percentile (right side of Figure 7) then first 

percentile (left side of Figure 7).  This figure is a summation of all intervals and 
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combinations (similar to Figure 10).   Appendix 3 contains all the individual ideal critical 

value graphs for the 95th percentile of the second percentile.  These graphs are 

represented by the first ten values of Figure 17.  Appendix 3 shows how the ideal critical 

values change as the first percentiles changes.  Appendix 4 contains all the individual 

ideal critical value graph for the 95th percentile of the first percentile.  These graphs are 

represented by the top value of each group of ten as shown in Figure 17.  As predicted in 

Chapter 3, the ideal critical values decrease as the percentile size decreases. 

 

Figure 17. Ideal Critical Values for Each Percentile 

5th second percentile 

95th second percentile 

Top values for each group of 
ten are 95th first percentile 
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Error information was gathered by using these ideal critical values to located 

outages in the virgin dataset.  The prediction that Type I Errors increase and Type II 

Errors decrease as percentiles increases is proven in Figure 18 and Figure 19, 

respectively.  These examples are the extremes of the spectrum, but they effectively show 

how important it is to select the correct first and second percentiles to manage the trade-

off between Type I and Type II Errors. 

 

Figure 18. Type I Errors for the 5th and 95th (first and second) percentiles 
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Figure 19. Type II Errors for the 5th and 95th (first and second) percentiles 

The key decision now becomes finding the balance between Type I and Type II 

Errors.  Figure 20 shows the Type I Errors for all 100 different percentile combinations 

used (the percentiles are in the same order as Figure 17). As the second percentile goes 

down (the second percentiles are separated by distinct black and gray bars in Figure 20) 

there is a greater stratification and variance in the amount of errors.  These errors are a 

summation of all errors for all six combinations and 36 intervals used in this analysis.  A 

5th first percentile and 5th second percentile minimizes Type I Errors to 1.26 percent. 

However, this percentile combination creates the largest amount Type II Errors of 0.195 

percent, as seen in Figure 21.  The specific breakdown for interval and combination for 

this percentile combination can be seen on the left of Figure 18 and Figure 19. 
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Figure 20. Type I Errors Ordered by Second then First Percentile 

Similar to the Type I Errors, the Type II Errors for all 100 percentile 

combinations are given in Figure 21.  Again, the stratification and variance of errors can 

be seen as the second percentile increases.  Also, these errors are a summation of all 

errors for all six combinations and 36 intervals used in this analysis.  The total number of 

Type II Errors is roughly 1/2000th of the total numbers of Type I Errors.  Therefore, a 5th 

first and 5th second percentiles reduces the total of both types of errors (regardless of 

5th second 
percentile 

First values for each color 
group are 95th first percentile 
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which type of error) based on sheer numbers.  A 95th first and 95th second percentile 

reduces Type II errors to 0.0367 percent but maximizes Type I Errors to 87.9 percent as 

seen in Figure 20.  The specific breakdown for interval and combination for this 

percentile combination can be seen on the right of Figure 18 and Figure 19. 

 

Figure 21. Type II Errors Ordered by Second then First Percentile 

Total Type I and Type II Errors were evaluated against their respective 

maximums to normalize their size difference.  Figure 22 and Figure 23 represent the 

95th second 
percentile 

First values for each color 
group are 95th first percentile 
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normalized Type I and Type II Errors, respectively.  These values are normalized by 

dividing each value by its respective maximum. 

 

Figure 22. Maximum Normalized Type I Error 
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Figure 23. Maximum Normalized Type II Error 

To optimize the model and reduce the number of outages, the two normalized 

errors are added together to see which percentile combination minimizes the combine 

percentage of maximum errors for each type.  Figure 24 graphs both Type I and Type II 

Error percentage of maximum errors together on the same plot.  This graph exposes the 

smallest combine percentage of maximum errors at the 5th first percentile and 85th second 
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percentile.  These results are limited because they aggregate all the intervals and 

combinations together, thus eliminating their potentially significant effects. 

 

Figure 24. Combine Maximum Normalized Error 

At the 5th first percentile and 85th second percentile, Type I Errors are 42 percent 

of the maximum and Type II Errors are 49 percent of the maximum.  The specific 

breakdown for interval and combination for this percentile combination can be seen in 



www.manaraa.com

80 

 

Figure 25.  A 52-week interval and one-day interval are the best option for this percentile 

combination with 0 percent Type II Error and 59 percent Type I Error.   

 

 

Figure 25. Ideal Critical Value, Type I and Type II Error for the 5th and 85th (first and 

second) percentiles 
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All Type II Errors for each of the 100 percentile combinations in this analysis 

have a similar shape and stay very small the closer they are to the one-minute interval.  

This area that has the ability to have the greatest impact on the number of total errors.  By 

using a smaller interval the Type II Errors are minimized and the focus can be placed on 

the Type I Errors (the larger proportion of errors).  Figure 26 illustrates this idea. 

Figure 26 through Figure 29 shows the one percent of the lowest total errors for 

all iterations of interval, combination, first percentile, and second percentile.  Figure 26 

show that to reduce error intervals of 96 minutes or less are ideal.  There is no clear 

interval that stands out amongst the rest, but the graph does show that no intervals were 

highlighted above the 96-minute interval.  Figure 27. Histogram of Lowest One 

Percent by CombinationFigure 27 shows that a combinations of 52 weeks is ideal for 

reducing errors; accounting for 62.5 percent of the sample space.  Figure 28 show that the 

5th and 15th first percentiles account for 67 percent of the sample space with 5th first 

percentile accounting for 44 percent of the sample space.  Figure 29 shows that the 5th 

second percentile accounts for 91 percent of the sample space.  The single best iteration 

was a 9-minute interval, 52-week combination, and a 5th percentile for both for the first 

and second percentiles which is within the ranges specified above (see Table 4).  
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Figure 26. Histogram of Lowest One Percent by Interval 

 

Figure 27. Histogram of Lowest One Percent by Combination 
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Figure 28. Histogram of Lowest One Percent by First Percentile 

 

Figure 29. Histogram of Lowest One Percent by Second Percentile 
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The above process was completed again for the reduction of Type I and then Type 

II Errors and their graphs are located in Appendix 5 and Appendix 6, respectively.  This 

analysis summarized in Table 3.  There is no consensus for interval range between the 

three reduction strategies.  52-week combination, and a 5th percentile for both first and 

second percentiles were seen in each of the three reduction strategies. 

Table 3. Best Iterations Ranges to Reduce Errors 

 

The individual best iteration for reducing total errors allowed on average 76 

minutes of Type I Error and 66 minutes of Type II Error every year.  In contrast, if the 

same methodology was applied for reducing only Type I Errors, there would be two 

minutes of Type I Error and 533 minutes of Type II Error every year.  Again, if Type II 

Errors were reduced, there would be 152 minutes of Type I Error and less than one 

second of Type II Error every year.  Minutes per year is used to evaluate the amount of 

error because the different interval lengths change how many individual errors are 

reported.  For example, an iteration with a one-minute interval could report 50 Type I 

Errors while an iteration with a 50-minute interval would report only one error for the 

same situation.  Table 4 displays the different individual “best” iterations and their 

Best at 
Reducing

Interval Range Combination Range
1st Percentile 

Range
2nd Percentile 

Range
Total Error 1-minute to 96-minute 52-Week only 15th to 5th 5th only

Type I Error
15-minute to 1-day 

26-Week to 52-
Week

25th to 5th 5th only

Type II Error* 1-minute only 52-Week only 5th only 5th only
*52-Week Combination, 5th first and second percentiles also reduced for 

Type I Errors
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effectiveness at reducing the errors.  It is important to note that combination, and both the 

first and second percentiles are the same for all iterations; the same values identified in 

Table 3.  Appendix 5 and Appendix 6 shows similar graphs as Figure 26 through Figure 

29 for the reduction of Type I and Type II Errors, respectively. 

Table 4. Individual Best Iterations for Reducing Errors 

  

 Success in this analysis is when the number of errors are reduced.  Errors can be 

reduced by using different percentiles to select the ideal critical value.  The effects of 

interval and combination should also be considered when selecting an outage detection 

strategy as outlined in this research.  Leaders or decision makers must determine which 

risks they are willing to take.  Type I Errors generally happen 2000 times more often than 

Type II Errors when using this methodology, but this number can be greatly decreased if 

specific iterations are chosen.  A leader or decision maker could assign weights to the two 

types of error to make the decision more quantitative.  The analysis conducted above did 

not assign weights and simply attempted to reduce the number of errors.   

4.4 Ellsworth Air Force Base Validation 

The dataset received from Ellsworth Air Force Base (AFB) contained 87 electric 

meters with daily energy usage.  After removal of nine meters that reported zero energy 

Best at 
Reducing

Interval Combination
1st 

Percentile
2nd 

Percentile
Minutes of Type 
I Error per Year 

Minutes of Type II 
Error per Year 

Total Error 9-minute 52-Week 5th 5th 76 66
Type I Error 96-minute 52-Week 5th 5th 2 533
Type II Error* 1-minute 52-Week 5th 5th 152 0.01

*400 of the 600 1-minute intervals contained only 1 Type II Error. Represented here 
is the iteration that also reduced the number of Type I Errors
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usage for all days reported, analysis was completed on 78 meters.  Some meters had very 

sporadic energy usage with the majority of the data being zeros (Data IDs of 21 and 70 in 

this analysis).  All meters only reported daily energy usage intervals which did not allow 

for interval optimization because daily usage is the maximum available interval in this 

analysis.  The ideal critical values used were the values that reduced the overall 

percentage of Type I and Type II Errors; 5th first percentile and 85th second percentile 

(see Figure 25).  This resulted in a “Good Match” for over 98 percent of the data for each 

combination (see Figure 30).  Ellsworth AFB data had the best good matches with a 1-

week combination instead of a 52-week combination as seen in section 4.2.  A 1-week 

combination equated to 99.8 percent good match.  Additionally, there is no Type II Errors 

because there is no varying of the interval width and the processing code finds “known” 

and “identified” outages by searching for zeros.  Further analysis needs to be completed 

with Air Force data with a smaller data collection interval. 
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Figure 30. Ellsworth AFB "Good Match" vs. Total Sample Space 

The ideal critical values and code did locate all the known outages but it also 

identified many intervals that weren’t outages (Type I Error).  There was more errors 

than true outage detection in all combinations but two as seen in Figure 31.  A 1-week 

combination is the best of the six combinations.  A 1-week combination has a 10 percent 

error, meaning 90 percent of indicated outages are indicated correctly. 
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Figure 31. Ellsworth AFB Type I Errors vs Identified Outages 

Figure 32 shows the percentage of outages by the Data ID.  There was Data IDs 

that contained a few errors, one that contained five times the errors and some that contain 

none.  The figure shows unconditionally that Data ID number 6 could not be trusted more 

than 10 percent of the time, regardless of if there was an outage or not. 
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Figure 32. Pareto Chart of Ellsworth AFB Errors by Data ID 

These Data IDs were then graphed in the same order to look for trends in outage 

length.  Figure 33 shows that most Data IDs with sporadic energy usage, Data IDs 21 and 

70, are actually better for locating outages or times with zero energy usage; located to the 

far right.  While it is apparent that these facilities are only used in short bursts, they can 

still be analyzed for energy usage and outage information if the occupation characteristics 

and patterns are better understood. 
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Figure 33. Ellsworth AFB Mean Outage Length in Descending Total Error Order 

By mapping the exact date of the outages, a few trends appeared.  In Figure 34, a 

few days pop out as being days with increased outages.  Because two meters contained 

very sporadic energy usage, there is a constant outage level throughout time period.  

These two meters break the earlier assumption that facilities will always have a small 

amount of power draw.  By looking at the metadata for these two meters, they report 
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energy usage for an empty warehouse and an alternate location for the command post to 

run emergency operations (buildings 7262 and 1011 or meters 23991390 and 56212956). 

 

Figure 34. Timeline of the Number of Outages 

Figure 35 shows the exact date of the top ten days of outages in the seven years’ 

worth of data.  South Dakota’s hard winters may have been a factor in these top 10 

outages.  With only 78 meters in the analysis, having 71 go down on 10-11 March 2015 

possibly shows a base wide outage that was only mitigated by 7 generators.  These 
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outages are at the mercy of the commercial power supplier.  If many outages are being 

seen base wide, then a more political strategy must be used to work with the commercial 

supplier to provide a better power quality.  Other, smaller groupings of outages could 

point to certain areas of the base that have degraded electrical infrastructure.  This type of 

analysis can be used to identify specific electrical branches that have more outages than 

others.  This stratification can advocate for funding in specific areas over other areas on 

the same base.  Doing so could also trace the facility outages back to a single point 

between the facilities and the commercial power supplier connection.   
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Figure 35. Pareto Chart of Most Outages in a Day 

In conclusion, better data is required for a thorough analysis of the ideal critical 

values for Ellsworth AFB.  Additionally, with the limited access to real Air Force data, it 

is unclear if ideal critical values from differing geographical locations (like Texas and 

South Dakota) are universally effective.  Finally, it was seen that interconnected systems, 

like Air Force Installations, will have system wide effects that can be reported from 

multiple individual measuring points (see Figure 34 and Figure 35). 
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4.5 Massachusetts Institute of Technology Lincoln Laboratory Tool 

The Massachusetts Institute of Technology Lincoln Laboratory (MITLL) Tool 

was developed for the DoD to quantify energy resilience and create a way to produce life 

cycle assessments of different electrical grid projects.  MITLL stated their largest issue 

was valid outage data (Nick Judson & Pina, 2017).  This analysis was tailored to show 

the impact of having better outage information provided by advanced meters.  This tool 

can be tailored to any base and any configuration.  For this analysis the base line for all 

inputs were left except for one; the System Average Interruption Frequency Index 

(SAIFI).  The SAIFI tells the Matlab program how many outages occur on average per 

year.  A smaller SAIFI indicates a more reliable electrical distribution infrastructure.  

This is then converted into a mean time to failure metric that is used in a probabilistic 

Monte Carlo simulation with 1,000 runs.  The preset location used was Joint Base Pearl 

Harbor-Hickam.  This base was used because it is an Air Force Joint Base and it has high 

pressure to perform because of Hawaii’s high cost of electricity. 

Type II Errors for 12 distinct iteration of interval, combination, and both first and 

second percentiles were used to setup the sensitivity analysis of the MITLL Tool.  Table 

5 displays the SAIFIs associated with these 12 iterations.  The 52-week combination was 

used in all iterations because it has proven to be the most useful in this analysis.  The first 

percentile had very minimal effects on the outcome of the SAIFI.  A one-minute interval 

from Table 4 proved to reduce the Type II Errors close to zero; this was chosen to be the 

baseline.  A baseline of 10-SAIFI simulates a system that has extremely few to no Type 
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II Errors.  Type I Errors were not analyzed in this section.  The SAIFI reduces as the 

intervals grow in width from one minute to one day.  And as the Type II Errors increase 

(as the interval width increases), there is more outages being missed, thus the calculated 

number of outages is underestimated and the SAIFI becomes incorrect.  For all 12 

situations in Table 5 the SAIFI should be 10, this causes issues with designing electrical 

systems.  The differences in SAIFI and Type II Errors can be seen as the iterations 

change in Table 5. 

Table 5. MITLL Sensitivity Analysis Setup 

Interval Combination 
1st 

Percentile 
2nd 

Percentile 
Calculated 

SAIFI 
Type II 
Errors 

1-min 52-week 5th 95th 10 ~0 
1-min 52-week 95th 95th 10 ~0 
1-min 52-week 5th 5th 10 ~0 
1-min 52-week 95th 5th 10 ~0 

15-min 52-week 5th 95th 9.994 0.000616 
15-min 52-week 95th 95th 9.994 0.000642 
15-min 52-week 5th 5th 9.973 0.002655 
15-min 52-week 95th 5th 9.973 0.002802 
1-day 52-week 5th 95th 9.377 0.06228 
1-day 52-week 95th 95th 9.377 0.06228 
1-day 52-week 5th 5th 8.839 0.114955 
1-day 52-week 95th 5th 8.839 0.116109 

 

The baseline SAIFI was set to 10 outages per year.  This number is within the 

range used in other simulations preloaded on the MITLL Tool.  A critical output from the 

tool was the recommended electrical system architecture and its corresponding unserved 

electrical load.  The top graph is ordered in descending cost per KWh and the bottom 
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shows the unserved load in the same order as the top graph.  The black bars in the bottom 

graph shows the current electrical infrastructure architecture.  This baseline is facility 

sized generators and commercial power with a total unserved load of 105 MWh (200 

times more than the maximum on the graphs below).  Appendix 7 shows the makeup of 

the different architectures found on top of each set of graphs.  Blue bars indicate 

architectures that are worse off than the black baseline bar.  Green bars are architectures 

whose cost and unserved load are lower than the baseline.  Figure 36 shows the 10-SAIFI 

base line for a one-minute interval of all first and second percentile iterations. 

 

Figure 36. MITLL Tool Output for One-Minute Interval/ 10.0 SAIFI 

For a 15-minute interval the Type II Error was 0.3 percent and 0.06 percent for 

the 5th and 95th second percentiles, respectively.  Applied to the SAIFI, a 15-minute 

interval would suggest that 9.97 and 9.994 outages per year occurred.  This was 

calculated because a 0.3 percent Type II Error translates to 3 missed outage for every 

1000 actual outages.  On the surface level it may seem desirable to only have 3 missed 
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outages, but with a one-minute interval there is, or theoretically is, zero missed outages.  

Figure 37 shows the 15-minute interval/5th second percentile output with a corresponding 

SAIFI of 9.97.  Figure 38 shows the 15-minute interval/95th second percentile output with 

a corresponding SAIFI of 9.994.  Very little difference can be seen visually between 

these two figures.  As with most iterations from Table 5, the following architectures were 

at least 100 times better at providing continuous power and consistently cheaper: 45, 30, 

15, 41, 11, and 26. 

 

Figure 37. MITLL Tool Output for 15-Minute Interval/5th Second Percentile/9.97 SAIFI 
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Figure 38. MITLL Tool Output for 15-Minute Interval/95th Second Percentile/9.994 

SAIFI 

Figure 39 shows the one-day interval/5th second percentile output with a 

corresponding SAIFI of 9.377.  Figure 40 shows the one-day interval/95th second 

percentile output with a corresponding SAIFI of 8.84.  Theoretically, as SAIFI goes down 

so will the unserved load.  This lower SAIFI hides outages and the true number of 

outages are not used to select the ideal system using the MITLL Tool.  Figure 39 and 

Figure 40 show near perfect outputs for the top six architectures.  Again this is a false 

representation of the system due to the Type II Errors that masked the true number of 

outages.  Figure 40 also shows that architecture 45 is no longer a cheaper option.  

Depending on the situation, 45 could have been used, but may have been eliminated as an 

option due to these Type II Errors. 
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Figure 39. MITLL Tool Output for 15-Minute Interval/5th Second Percentile/9.377 

SAIFI 

 

Figure 40. MITLL Tool Output for 15-Minute Interval/95th Second Percentile 8.84 

SAIFI 

The problem with the additional Type II Error is that the operator is over 

confident in the status of their electrical system.  They think they have less outages a year 
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than they really do.  Even a small difference effects the outputs greatly as seen in Figure 

36 compared to Figure 40.  Table 6 shows the results from the analysis of the effects of 

Type II Errors.  The baseline ideal architecture was 30 which included: facility level and 

centralized standby generators, islandable photovoltaics, uninterrupted power supplies, 

fuel cells and microgrids.  This architecture was the same for all cases but the last which 

had an ideal architecture of 15.  Architecture 15 included the same items at 30 except 

twice as many centralized generators with no facility level standby generators and 

cogeneration of heat and power.  If anything other than the baseline is used then the 

realized benefits would be less than what is expected.  If a design was created thinking 15 

is the best architecture and the truth was that 30 was the best, then not only would there 

be less benefits but also the incorrect architecture would be constructed. 

Table 6. MITLL Ideal Architecture Results 

 

Interval Combination
1st 

Percentile
2nd 

Percentile
Calculated 

SAIFI
Ideal 

Architecture
Unserved 

load (KWh)
1-min 52-week 5th 95th 10 30 79
1-min 52-week 95th 95th 10 30 79
1-min 52-week 5th 5th 10 30 79
1-min 52-week 95th 5th 10 30 79

15-min 52-week 5th 95th 9.994 30 60
15-min 52-week 95th 95th 9.994 30 60
15-min 52-week 5th 5th 9.973 30 45
15-min 52-week 95th 5th 9.973 30 45
1-day 52-week 5th 95th 9.377 30 30
1-day 52-week 95th 95th 9.377 30 30
1-day 52-week 5th 5th 8.839 15 10
1-day 52-week 95th 5th 8.839 15 10
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The system will perform as seen in Figure 36 but the operator will think they are 

paying for the performance as seen in Figure 40.  Proper identification is helpful because 

the more options to choose from makes modernizing and upgrading easier and possibly 

cheaper.  

4.6 Summary 

The three investigative questions and their simplified answers are as follows: 

i. Can outages be found using historical advanced meter data with Means and 

Standard Deviations?  If so, what Standard Deviation should be used? 

A. Yes, Means and SDs can be used to identify outages.  Ideal critical values 

can be used to estimate an outage timestamp, but there are associated risks 

and errors for which ideal critical values are chosen as seen in the 

percentile sensitivity analysis. 

ii. What is the optimum data interval and combination to identify outages using 

historical advanced meter data? 

A. A 52-week combination (annual average) and 5th first and second 

percentiles produced the best results for correctly identifying data.  

Selecting which interval to use depends on which type of error is 

attempting to be reduced. 

iii. How does advanced meter data affect electrical grid modernization planning 

including advanced energy production technology?   
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A. Advanced meter data can deliver outage information for the use of 

influencing future electrical projects.  Good meter data gives confidence 

that designs will be accurate. 

These questions were answered through the use of the analysis in this chapter.  Analysis 

was conducted in a way to produce results and recommend improvements to the Air 

Force.  Advanced meter data and systems already in place have the power to help 

influence operations, maintenance and construction efforts in the DoD.  
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V.  Conclusions and Recommendations 

5.1 Conclusions of Research 

The United States Air Force standard of 15-minute data collection intervals for 

advanced meters is good for benchmarking, facility energy intensity comparison, and unit 

energy use comparison (Department of the Air Force, 2017a).  The data collected could 

also be used for locating outages and improving the way the Air Force spends its money 

to improve its electrical systems.  This research attempted to show that historical 

electrical meter data could be used to find outages.  The concept combination was created 

to analyze different data collection intervals.  These concepts are far from being perfect 

and warrant a closer look by future researchers.  

A 52-week combination and 5th first and second percentiles produced the best 

results for correctly categorizing data.  It was also found that smaller intervals also assist 

in reducing errors.  This was accomplished through the use of ideal critical values that 

were developed by using data from residential homes in Austin, TX through Pecan Street.  

These specific conclusions are limited to Austin, TX but the methods used could be 

validated for a larger geographic region with further testing and more data.  The ideal 

critical values were applied to electrical energy usage for Ellsworth Air Force Base 

(AFB).  Due to the large width of the data collection interval, results from this analysis 

were very limited.  The Ellsworth AFB analysis did, however, prove an assumption 

wrong that if an advanced meter was reporting zero energy usage that there was an 

outage or malfunction.  This is because low use or unoccupied facilities could actually 
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have zero registered energy usage or amperage.  This finding limits the application of this 

thesis to occupied facilities with electronics.  In the end, the ideal critical values located 

outages with a 10-40 percent Type I Error (see Figure 31).  Additionally, power can be 

disconnected for safety purposes during routine maintenance and by using the 

methodology in this thesis this would be classified as an outage.  These issues can be 

overcome with detailed record keeping of the maintenance, repair and real property 

records.  This points to the fact that outage detection is as much analytics as it is 

documentation. 

The way the critical values are determined was also investigated.  Like much of 

the other outcomes, there is not exactly a perfect solution because there is a lot of 

uncertainty and risk involved with using these methods.  Leaders must understand the 

risks to better inform their decisions on how to apply these methods.  The Massachusetts 

Institute of Technology Lincoln Laboratory (MITLL) Tool was also used to identify how 

the planning of different electrical projects are affected by differing outage data.  

Specifically, Type II Errors from a 15-minute and 1-day data collection intervals 

influenced over confident decisions.  With better meter data, more outages can be found 

and better designs can be created by looking at the energy usage trends.  These positive 

effects could compound because designing systems for proper conditions reduce the 

chances of overloading electrical systems (leading to more outages). 
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5.2  Significance of Research 

Significant improvements to electrical distribution repair planning and 

programming could be seen by incorporating meter data in addition to linear 

segmentation and geographic information system (GIS) data.  The impacts to funding a 

particular project over another could be better realized with the addition of outage and 

energy usage information.  Asset management companies in the private sector do similar 

surveys and studies for public utilities.  By using the systems the Air Force is developing 

and already has in place, like the Advanced Meter Reading System (AMRS), better 

funding can be provided to installations around the world.  Doing so would be a positive 

move towards the Air Force priority to cost effectively modernize (Secretary of the Air 

Force, 2017). 

The Air Force’s advanced meter data collection interval width could be decreased 

to accommodate finding smaller outages.  The reduction of the interval width will create 

even more data to store and transfer, as described by Zhou et al. (Zhou et al., 2016).  

These changes could be implemented depending on the ability of the current AMRS 

system.  Locating more outages will give the Air Force a better understanding of the 

hazards that could be unnoticed.  Finding and reducing outages will create a more 

resilient and reliable grid which is the main focus of the Air Force Energy Flight Plan 

(Department of the Air Force, 2017b). 
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5.3  Recommendations for Action 

It is recommended that The Air Force Civil Engineer Center (AFCEC) 

investigates the effectiveness of the AMRS to identify outages and make locating outages 

one of their key pillars for justifying advanced meter investments.  This research uses the 

idea that Last Gasp messages are not being used.  With the high error rates of this 

research more work need to be done, but the use of Last Gasp messages removes the 

requirement of guessing if an outage occurred.  Last Gasp messages can give a start time 

and meter reconnection can give an end time for the outage.  This process could be 

automated and integrated within the Air Force’s current AMRS.  AFCEC states that a 

similar, but less precise, function already exists in the current AMRS.  It is accomplished 

by highlighting the interval that communication was lost with the meter (possibly from an 

outage), but this protocol does not provide an exact timestamp for when the loss of 

communication occurred.  Regardless, its ability to inform asset management decisions is 

not happening systemically throughout the Air Force (Gerdes, 2017).   

Finally, if the ARMS is able to effectively locate outages, then its capabilities 

should be combine with the Utility System Outage Reporting and Tracking (USORT) 

Tool.  With AMRS and USORTS working together, a complete picture of the 

vulnerabilities in the Air Force’s electrical system can be seen.  This data could then be 

used to inform IPL decisions. 
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5.4 Recommendations for Future Research 

Future follow-on research is a must to refine and validate the findings from this 

thesis to other geographic areas.  Additionally, other outage detection strategies could 

also be investigated, like analyzing the maximum difference between sequential intervals 

to locate outages (a sudden drop in energy usage).  Future research could also be 

conducted on other utilities that utilize advanced meters. Another topic could be to 

investigate if there is a seasonal dependency of how long the intervals should be. For 

example, in summer the intervals could be smaller because there is a higher Heating 

Ventilation and Air Conditioning load or in the Fall and Spring the intervals can be wider 

to alleviate additional unnecessary data storage and transfer. 

Another aspect of this research that could be expanded is looking at multiple 

facilities on a single meter.  This could be simulated or organic.  By looking at trends in 

this aggregated energy usage there could be dependencies that exist.  These aggregated 

meters could work in tandem with single facility meters to give more fidelity that an 

outage has occurred. 

Another very useful analysis could be an artificial intelligence application to 

outage detection with advanced meters.  Computerization of when and where outages 

were occurring can help the system learn what outages at what locations are being missed 

and when they are being correctly identified.  This application is advanced and rigorous, 

but also become obsolete by using Last Gasp messages. 
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Finally, the Microgrid Design Toolkit (MDT) created by Sandia Laboratories is 

another useful tool that could also be used in future iterations of this research involved in 

energy resilience.  The MDT is a software using Monte Carlo simulations to evaluate the 

performance of different electrical infrastructure architectures, making it a perfect 

candidate for any type of sensitivity analysis.  This program is free and available online 

through the Department of Energy. 
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odel Building Flow Chart 

 

Figure 42. Model Validation Flow Chart 

 

Figure 43. Aggregation Model Building
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Appendix 2. Raw R Studio Code 

Pecan Street 

################MODEL BUILD################ 
#library(readr) 
#rawdata <- read_csv("pecan/rawdata.csv", col_names = FALSE) 
colnames(rawdata)=(c("X1","X2","X3")) 
dataidlist=unlist(unique(rawdata[,3])) 
numdataid=length(dataidlist) #number of distinct data IDs=88 
possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440) 
possible_combo_int=c(1,2,4,13,26,52) 
crit_val=array(dim=c(6,36,numdataid)) 
store_x=array(dim=c(6,36,numdataid)) 
pos_pos=array(dim=c(6,36,numdataid)) 
neg_neg=array(dim=c(6,36,numdataid)) 
type1error=array(dim=c(6,36,numdataid)) 
type2error=array(dim=c(6,36,numdataid)) 
outlengstr=array(dim=c(numdataid,100000))#I dont know how many contiguous outages there will be, but i know it is highly unlikely 
that there will be over 100,000 
day=array(dim=c(numdataid,2)) 
duplicates=numeric(numdataid) 
minperyear=60*24*365 
w=1#####TESTS 
{start_time=Sys.time() 
  for(w in 1:numdataid){#for each DataID 
    run=subset(rawdata,rawdata$X3==as.numeric(dataidlist[w])) #run is created for the individual DataID 
    run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an 
outage or a meter malfunction 
    if(sum(duplicated(run$X1))>0){duplicates[w]=1#notifies if there is any duplicates in the specific DataID. hypothetically this is a 
malfunction and would need to be fixed  
    run=run[!duplicated(run$X1),]}#if there was a duplicate, the 1st value is assumped to be correct and everything else is an error. 
    run=run[!is.na(run$X1),]#removes the rows that do not have a valid date 
    run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order 
    xleng=length(run$X1) 
     
    {i=1 
      j=1 
      while (i<2){chk=as.numeric(run[j,1]) 
      if (chk%%(60*60*24)==60){ 
        if (is.na(run[j,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining 
of data set is not clean 
        else{i=i+1}} 
      else {j=j+1}}#this function finds the first position in the data to being clean_date 
      k=j 
      clean_date=as.numeric(unlist(run[j:xleng,1])) 
    }#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0 
     
    xleng=length(clean_date)#new length with trimmed times 
    totalmin=1+(clean_date[xleng]-clean_date[1])/60 
    day[w,1]=as.Date(clean_date[1], origin="1970-01-01") 
    day[w,2]=as.Date(clean_date[xleng], origin="1970-01-01") 
     
    {i=1 
      j=1 
      clean=numeric(totalmin) 
      while (i<totalmin+1){ 
        if(clean_date[1]+60*(i-1)-clean_date[j]==0){ 
          if(is.na(run[k,2])){clean[i]=0} 
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          else{clean[i]=(run[k,2])} 
          k=k+1 
          i=i+1 
          j=j+1} 
        else{clean[i]=0 
        i=i+1}} 
    }#fills gaps in data with 0 energy usage 
    xleng=length(clean)#new length with filled in missing data 
    clean=unlist(clean) 
     
    {i=1#where are the 0s? 
      j=1 
      k=1 
      zeros=sort(which(clean==0)) #tells me which rows are 0! 
      if(length(zeros)>1){ 
        for (i in 1:(length(zeros)-1)){ 
          if (zeros[i]-zeros[i+1]==-1){j=j+1}  
          else{outlengstr[w,k]=j 
          k=k+1 
          j=1} 
          outlengstr[w,k]=j}}#last one! 
      else{if(length(zeros==1)){outlengstr[w,1]=1} 
        else{outlengstr[w,1]=0}} 
    }#finds outage lengths and and frequency 
     
    q=36####TEST 
    for (q in 1:36){  #for each interval (36 different intervals) 
      int_leng_min=possible_int_leng_min[q]#tested interval in "q-th" minutes 
      int_day=(60*24)/int_leng_min #how many intervals in a single day 
      x=floor(xleng/int_leng_min) #combination rule....new length rounded down 
      zeros_new=unique(ceiling(zeros/int_leng_min)) 
      zeros_new1=zeros_new 
       
      {run_new=(sapply(1:x,function(i){ 
        o=(sapply(1:int_leng_min,function(j){ 
          (clean[int_leng_min*i-int_leng_min+j])})) 
        sum(o[1:int_leng_min]) 
      })) 
      }#combines usage data by the given interval (total energy usage) !!!!NO LONGER MIN/MIN!!!!! 
       
      run_new1=run_new 
      p=1####TEST 
      if(length(zeros_new)!=0){ 
        run_new=run_new1 
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day. 
          chk1=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk1=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk1=numeric()} 
            else{zchk1=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
        }#starts data within a day of the the middle of Jan, Apr, Jul, Oct 
         
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule 
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day. 
          chk2=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk2=numeric()} 
            else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
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          #cuts out any zeros that occur before j and re-indexs the values 
        }#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different 
categories 
        zscore=array(dim=c(length(zeros_new),6)) 
        chk=array(dim=c(length(zeros_new),6)) 
        for(p in 1:6){ 
          wk=possible_combo_int[p] #combine the data for "p" weeks 
           
          {if(wk==13){run_new=chk1 
          x=length(run_new) 
          zeros_new=zchk1} 
            if(wk==26){run_new=chk2 
            x=length(run_new) 
            zeros_new=zchk2}  
            if(wk==52){run_new=run_new1 
            x=length(run_new1) 
            zeros_new=zeros_new1}}#alters the data if looking at seasonal or bi-yearly combinations 
           
          combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364 
days/yr for calculations) 
          intmean=numeric(combo_yr) 
          intsd=numeric(combo_yr) 
          #must use 364 to keep whole weeks, starting and ending on the same day of the week!  The specific month or paticular "number 
date" are overlooked 
          #each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the 
next! and so on... 
          groups=numeric() 
          x_combo=floor(x/int_day) 
          x=x_combo*int_day 
          if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[1:(min(which(zeros_new>x))-1)]}}#trim 
"zeros_new" as well, if there are zeros in the trim, zscore fails 
          n=ceiling(x/(364*int_day)) 
          run_new=run_new[1:(x)] 
           
          for(i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int_day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data 
          for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i])>=0))])} 
          for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean 
and SD are created by combining using "p"th weeks 
           
          if(length(zeros_new)!=0){ 
            for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&5 for run_new could be shorter.... 
            j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index 
            zscore[i,p]=(run_new[k]-intmean[j])/intsd[j]  #use the "new_run" that contains a 0, find its z score away from the mean. 
            chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the 0s at any interval 
            }#finds the standardized distance way from the mean (defined as zscores) of all the outages 
            crit_val[p,q,w]=zscore[order(-zscore[which(is.na(zscore[,p])!=1),p]),p][ceiling(.1*length(which(is.na(zscore[,p])!=1)))]##90% 
(or if <10 zeros... ((z-1)/z)% (less than 90%)) of the zeros are at or below this zscore 
            crit_val[p,q,w]=ifelse(crit_val[p,q,w]>0,0,crit_val[p,q,w]) 
            #consider makeing crit value neg or 0... reduces type 2 0s but increases type 1 
            #crit_val says everything at or below this value is an outage....additional care must be taken if NAs exist in the zscore array 
when calculating errors and crit val because it messes with the sorting vectors. 
            store_x[p,q,w]=x 
            type1error[p,q,w]=length(which(zscore[,p]>crit_val[p,q,w]))-sum(chk[which(zscore[,p]>crit_val[p,q,w]),p]) #outputs the 
number of zeros that are larger than the "critical value", because "zscore" only contains outages,  
            #those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then 
the outage can be ID'd by simply searching for 0s. 
            intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            type2error[p,q,w]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=crit_val[p,q,w]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=crit_val[p,q,w]),zeros_new))) 
            neg_neg[p,q,w]=length(which(is.na(zscore[,p])!=1))-type1error[p,q,w]#any outage with a zscore equal to or less than the 
critical value is correctly ID'd as an outage (true reject the null) 
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            pos_pos[p,q,w]=x-neg_neg[p,q,w]-type1error[p,q,w]-type2error[p,q,w]#all other values are correctly ID'd no outage 
            #type2error finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating 
zeros) 
          }#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would 
be an error? 
        }#end of P loop 
      }#end of STD DEV VS. OUTAGE 
    }}#end of W & Q loop 
  {out_num=numeric(numdataid) 
    out_median=numeric(numdataid) 
    out_mean=numeric(numdataid) 
    for (i in 1:numdataid)out_num[i]=length(outlengstr[i,which(outlengstr[i,]>0)]) 
    for (i in 1:numdataid)out_median[i]=median(outlengstr[i,which(outlengstr[i,]>0)]) 
    for (i in 1:numdataid)out_mean[i]=mean(outlengstr[i,which(outlengstr[i,]>0)]) 
    out_mean_total=mean(outlengstr[which(outlengstr>0)]) 
    out_median_total=median(outlengstr[which(outlengstr>0)]) 
  }#mean and median information about outages 
  {test_crit_val=array(dim=c(6,36)) 
    for (i in 1:6){for (j in 1:36){ 
      test_crit_val[i,j]=sort(crit_val[i,j,])[ceiling(numdataid*.9)] 
    }} 
  }#crit_val key metrics and error information 
   
  {write.table(day, file = "C:/Users/Jared/Google Drive/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE) 
  write.table(test_crit_val, file = "C:/Users/Jared/Google Drive/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = 
FALSE) 
  #write.table(day, file = "pecan/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code 
  #write.table(test_crit_val, file = "pecan/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code 
  }#print the tables that will be needed in validation and aggregation processes 
   
  time1=Sys.time()-start_time 
  time1}#end of model building code 
 
write.table(testdata, file = "C:/Users/Jared/Google Drive/testdata.txt", sep = "\t", row.names = FALSE, col.names = FALSE) 
####Graph Code####  PRINT ALL AT 1000 pixels wide!!!!!!! 
#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))# 
Specify axis options within plot()  
{ 
{jpeg(filename = paste("crit_val.jpg"),width = 7.5, height = 7.5, units ="in",res = 750) 
  plot(c(1,36),c(-1.6,-.8),type="n",main="Critical Values by Combination and Interval", xlab="Interval (minutes)", ylab="Critical 
Value",xaxt="n") 
  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  lines((1:(36)),test_crit_val[(1:36)*6-5], col="blue", lty=1, lwd=4, pch=19) 
  lines((1:(36)),test_crit_val[(1:36)*6-4], col="red", lty=1, lwd=4, pch=19) 
  lines((1:(36)),test_crit_val[(1:36)*6-3], col="green", lty=1, lwd=4, pch=19) 
  lines((1:(36)),test_crit_val[(1:36)*6-2], col="black", lty=1, lwd=4, pch=19) 
  lines((1:(36)),test_crit_val[(1:36)*6-1], col="orange", lty=1, lwd=4, pch=19) 
  lines((1:(36)),test_crit_val[(1:36)*6], col="yellow", lty=1, lwd=4, pch=19) 
  points((1:(36)),test_crit_val[(1:36)*6-5], col="blue", pch=19, cex=1) 
  points((1:(36)),test_crit_val[(1:36)*6-4], col="red", pch=19, cex=1) 
  points((1:(36)),test_crit_val[(1:36)*6-3], col="green", pch=19, cex=1) 
  points((1:(36)),test_crit_val[(1:36)*6-2], col="black", pch=19, cex=1) 
  points((1:(36)),test_crit_val[(1:36)*6-1], col="orange", pch=19, cex=1) 
  points((1:(36)),test_crit_val[(1:36)*6], col="yellow",  pch=19, cex=1) 
  legend(1,-1.2,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=1,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
dev.off()}#shows the specified 10 percentile "Critical Values" 
}#end of graphics code 
#################VALIDATE################ 
#requires "test_crit_val" from Model_Building.R 
library(readr) 
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testdata <- read_csv("pecan/testdata.txt", col_names = FALSE)#import the test data... format= '%Y-%m-%d %H:%M:%S-%z' 
colnames(testdata)=(c("X1","X2","X3")) 
{dataidlist_test=unlist(unique(testdata[,3])) 
  numdataid=length(dataidlist_test) 
  
possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440) 
  possible_combo_int=c(1,2,4,13,26,52) 
  store_x_test=array(dim=c(6,36,numdataid)) 
  pos_pos_test=array(dim=c(6,36,numdataid)) 
  neg_neg_test=array(dim=c(6,36,numdataid)) 
  typeIIerror_test=array(dim=c(6,36,numdataid)) 
  typeIerror_test=array(dim=c(6,36,numdataid)) 
  outlengstr_test=array(dim=c(numdataid,1000000)) 
  day_test=array(dim=c(numdataid,2)) 
  duplicates_test=numeric(numdataid) 
  minperyear=60*24*365}#creates the variables 
w=1#####TESTS 
{start_time=Sys.time() 
  for(w in 1:numdataid){#for each DataID 
    run=subset(testdata,testdata$X3==as.numeric(dataidlist_test[w])) #run is created for the individual DataID 
    run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an 
outage or a meter malfunction 
    if(sum(duplicated(as.numeric(run$X1)))>0){duplicates_test[w]=1#notifies if there is any duplicates in the specific DataID. 
hypothetically this is a malfunction and would need to be fixed  
    run=run[!duplicated(run$X1),]}#if there was a duplicate the 1st value is assumped to be correct and everything else is an error. 
    run=run[!is.na(run$X1),]#removes the rows that do not have a valid date 
    run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order 
    xleng=length(run$X1) 
     
    {i=1 
      j=1 
      while (i<2){chk=as.numeric(run[j,1]) 
      if (chk%%(60*60*24)==60){ 
        if (is.na(run[j,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining 
of data set is not clean 
        else{i=i+1}} 
      else {j=j+1}}#this function finds the first position in the data to being clean_date 
      k=j 
      clean_date=as.numeric(unlist(run[j:xleng,1])) 
    }#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0 
     
    xleng=length(clean_date)#new length with trimmed times 
    totalmin=1+(clean_date[xleng]-clean_date[1])/60 
    day_test[w,1]=as.Date(clean_date[1], origin="1970-01-01") 
    day_test[w,2]=as.Date(clean_date[xleng], origin="1970-01-01") 
     
    {i=1 
      j=1 
      clean=numeric(totalmin) 
      while (i<totalmin+1){ 
        if(clean_date[1]+60*(i-1)-clean_date[j]==0){ 
          if(is.na(run[k,2])){clean[i]=0} 
          else{clean[i]=(run[k,2])} 
          k=k+1 
          i=i+1 
          j=j+1} 
        else{clean[i]=0 
        i=i+1}} 
    }#fills gaps in data with 0 energy usage 
    xleng=length(clean)#new length with filled in missing data 
    clean=unlist(clean) 
     
    {i=1#where are the 0s? 
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      j=1 
      k=1 
      zeros=sort(which(clean==0)) #tells me which rows are 0! 
      if(length(zeros)>1){ 
        for (i in 1:(length(zeros)-1)){ 
          if (zeros[i]-zeros[i+1]==-1){j=j+1}  
          else{outlengstr_test[w,k]=j 
          k=k+1 
          j=1} 
          outlengstr_test[w,k]=j}}#last one! 
      else{if(length(zeros==1)){outlengstr_test[w,1]=1} 
        else{outlengstr_test[w,1]=0}} 
    }#finds outage lengths and and frequency 
     
    q=1####TEST 
    for (q in 1:36){  #for each interval (36 different intervals) 
      int_leng_min=possible_int_leng_min[q]#tested interval in "q-th" minutes 
      int_day=(60*24)/int_leng_min #how many intervals in a single day 
      x=floor(xleng/int_leng_min) #combination rule....new length rounded down 
      zeros_new=unique(ceiling(zeros/int_leng_min)) 
      zeros_new1=zeros_new 
       
      {run_new=(sapply(1:x,function(i){ 
        o=(sapply(1:int_leng_min,function(j){ 
          (clean[int_leng_min*i-int_leng_min+j])})) 
        sum(o[1:int_leng_min]) 
      })) 
      }#combines usage data by the given interval (total energy usage) !!!!NO LONGER MIN/MIN!!!!! 
       
      run_new1=run_new 
      p=1####TEST 
      if(length(zeros_new)!=0){ 
        run_new=run_new1 
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day. 
          chk1=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk1=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk1=numeric()} 
            else{zchk1=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
        }#starts data within a day of the the middle of Jan, Apr, Jul, Oct 
         
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule 
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day. 
          chk2=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk2=numeric()} 
            else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
          #cuts out any zeros that occur before j and re-indexs the values 
        }#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different 
categories 
        zscore=array(dim=c(length(zeros_new),6)) 
        chk=array(dim=c(length(zeros_new),6)) 
        for(p in 1:6){ 
          wk=possible_combo_int[p] #combine the data for "p" weeks 
           
          {if(wk==13){run_new=chk1 
          x=length(run_new) 
          zeros_new=zchk1} 
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            if(wk==26){run_new=chk2 
            x=length(run_new) 
            zeros_new=zchk2}  
            if(wk==52){run_new=run_new1 
            x=length(run_new1) 
            zeros_new=zeros_new1}}#alters the data if looking at seasonal or bi-yearly combinations 
           
          combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364 
days/yr for calculations) 
          intmean=numeric(combo_yr) 
          intsd=numeric(combo_yr) 
          #must use 364 to keep whole weeks, starting and ending on the same day of the week!  The specific month or paticular "number 
date" are overlooked 
          #each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the 
next! and so on... 
          groups=numeric() 
          x_combo=floor(x/int_day) 
          x=x_combo*int_day 
          if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[1:(min(which(zeros_new>x))-1)]}}#trim 
"zeros_new" as well, if there are zeros in the trim, zscore fails 
          n=ceiling(x/(364*int_day)) 
          run_new=run_new[1:(x)] 
           
          for(i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int_day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data 
          for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i])>=0))])} 
          for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean 
and SD are created by combining using "p"th weeks 
           
          if(length(zeros_new)!=0){ 
            for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&5 for run_new could be shorter.... 
            j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index 
            zscore[i,p]=(run_new[k]-intmean[j])/intsd[j]  #use the "new_run" that contains a 0, find its z score away from the mean. 
            chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the 0s at any interval 
            }#finds the standardized distance way from the mean (defined as zscores) of all the outages 
            store_x_test[p,q,w]=x 
            typeIIerror_test[p,q,w]=length(which(zscore[,p]>test_crit_val[p,q]))-sum(chk[which(zscore[,p]>test_crit_val[p,q]),p]) 
#outputs the number of zeros that are larger than the "critical value", because "zscore" only contains outages,  
            #those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then 
the outage can be ID'd by simply searching for 0s. 
            intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            typeIerror_test[p,q,w]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q]),zeros_new))) 
            neg_neg_test[p,q,w]=length(which(is.na(zscore[,p])!=1))-typeIIerror_test[p,q,w]#any outage with a zscore equal to or less than 
the critical value is correctly ID'd as an outage (true reject the null) 
            pos_pos_test[p,q,w]=x-neg_neg_test[p,q,w]-typeIIerror_test[p,q,w]-typeIerror_test[p,q,w]#all other values are correctly ID'd 
no outage 
            #typeIerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating 
zeros) 
          }#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would 
be an error? 
        }#end of P loop 
      }#end of STD DEV VS. OUTAGE 
    }}#end of W & Q loop 
  {out_num_test=numeric(numdataid) 
    out_median_test=numeric(numdataid) 
    out_mean_test=numeric(numdataid) 
    for (i in 1:numdataid)out_num_test[i]=length(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    for (i in 1:numdataid)out_median_test[i]=median(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    for (i in 1:numdataid)out_mean_test[i]=mean(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    out_mean_total_test=mean(outlengstr_test[which(outlengstr_test>0)]) 
    out_median_total_test=median(outlengstr_test[which(outlengstr_test>0)]) 
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  } 
  time1=Sys.time()-start_time 
  time1}#end of model validiation 
 
#PREP FOR MATLAB/MITLL 
mean((typeIerror_test[6,11,])/store_x_test[6,11,])#5.04% 
mean((typeIerror_test[6,1,])/store_x_test[6,1,])#3.3% 
mean((typeIIerror_test[6,11,])/store_x_test[6,11,])#.01% 
mean((typeIIerror_test[6,1,])/store_x_test[6,1,])#0% 
 
(sum(typeIerror_test[6,11,])/sum(neg_neg_test[6,11,]+typeIerror_test[6,11,]))#41.2% 
(sum(typeIerror_test[6,1,])/sum(neg_neg_test[6,1,]+typeIerror_test[6,1,]))#33.3% 
(sum(typeIIerror_test[6,11,])/sum(neg_neg_test[6,11,]+typeIerror_test[6,11,]))#.1% 
(sum(typeIIerror_test[6,1,])/sum(neg_neg_test[6,1,]+typeIerror_test[6,1,]))#0.0% 
(sum(typeIIerror_test[6,11,])/sum(neg_neg_test[6,11,]+typeIIerror_test[6,11,]))#.2% 
(sum(typeIIerror_test[6,1,])/sum(neg_neg_test[6,1,]+typeIIerror_test[6,1,]))#0.0% 
 
#if typeIIerrors are fix before anyone knows... we will never know they happend 
#what is correctly ID'd?  ID outages higher isnt always the best thing....missed outages between 15 and and 1 min are not substantial 
 
####Graph Code####  PRINT ALL AT 1000 pixels wide!!!!!!! 
par(mfrow=c(1,1)) #reset to 1 by 1 graph 
#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))# 
Specify axis options within plot()  
 
{plot(c(1,36),c(0,12),type="n",main="Validation Type II Errors as % of Known Outages", xlab="Interval (minutes)", ylab="Percent 
Errors (%)",xaxt="n") 
  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  title(" \"X% of actual outages that were not identified\" ",line = .5,col.main="dark blue",cex.main=.9) 
  
lines((1:(36)),100*rowSums(typeIIerror_test[1,,],na.rm=TRUE)/(rowSums(typeIIerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[1,,],na.rm=TRUE)), col="blue", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIIerror_test[2,,],na.rm=TRUE)/(rowSums(typeIIerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[2,,],na.rm=TRUE)), col="red", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIIerror_test[3,,],na.rm=TRUE)/(rowSums(typeIIerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[3,,],na.rm=TRUE)), col="green", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIIerror_test[4,,],na.rm=TRUE)/(rowSums(typeIIerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[4,,],na.rm=TRUE)), col="black", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIIerror_test[5,,],na.rm=TRUE)/(rowSums(typeIIerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[5,,],na.rm=TRUE)), col="orange", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIIerror_test[6,,],na.rm=TRUE)/(rowSums(typeIIerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[6,,],na.rm=TRUE)), col="yellow", lty=1, lwd=4, pch=19) 
points((1:(36)),100*rowSums(typeIIerror_test[1,,],na.rm=TRUE)/(rowSums(typeIIerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_t
est[1,,],na.rm=TRUE)), col="blue", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIIerror_test[2,,],na.rm=TRUE)/(rowSums(typeIIerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_t
est[2,,],na.rm=TRUE)), col="red", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIIerror_test[3,,],na.rm=TRUE)/(rowSums(typeIIerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_t
est[3,,],na.rm=TRUE)), col="green", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIIerror_test[4,,],na.rm=TRUE)/(rowSums(typeIIerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_t
est[4,,],na.rm=TRUE)), col="black", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIIerror_test[5,,],na.rm=TRUE)/(rowSums(typeIIerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_t
est[5,,],na.rm=TRUE)), col="orange", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIIerror_test[6,,],na.rm=TRUE)/(rowSums(typeIIerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_t
est[6,,],na.rm=TRUE)), col="yellow",  pch=19, cex=1) 
  legend(0,11.5,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
}#shows the Type II errors as a percentage of the known outages  
 
####NOT USED 
{plot(c(1,36),c(0,15),type="n",main="Validation Type I Errors as % of Total Sample Space", xlab="Interval (minutes)", 
ylab="Percent Errors (%)",xaxt="n") 
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  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  title(" \"X% of the total sample space was incorrectly identified as an outage\" ",line = .5,col.main="dark blue",cex.main=.9) 
  lines((1:(36)),100*rowSums(typeIerror_test[1,,],na.rm=TRUE)/rowSums(store_x_test[1,,],na.rm=TRUE), col="blue", lty=1, lwd=4, 
pch=19) 
  lines((1:(36)),100*rowSums(typeIerror_test[2,,],na.rm=TRUE)/rowSums(store_x_test[2,,],na.rm=TRUE), col="red", lty=1, lwd=4, 
pch=19) 
  lines((1:(36)),100*rowSums(typeIerror_test[3,,],na.rm=TRUE)/rowSums(store_x_test[3,,],na.rm=TRUE), col="green", lty=1, 
lwd=4, pch=19) 
  lines((1:(36)),100*rowSums(typeIerror_test[4,,],na.rm=TRUE)/rowSums(store_x_test[4,,],na.rm=TRUE), col="black", lty=1, lwd=4, 
pch=19) 
  lines((1:(36)),100*rowSums(typeIerror_test[5,,],na.rm=TRUE)/rowSums(store_x_test[5,,],na.rm=TRUE), col="orange", lty=1, 
lwd=4, pch=19) 
  lines((1:(36)),100*rowSums(typeIerror_test[6,,],na.rm=TRUE)/rowSums(store_x_test[6,,],na.rm=TRUE), col="yellow", lty=1, 
lwd=4, pch=19) 
  points((1:(36)),100*rowSums(typeIerror_test[1,,],na.rm=TRUE)/rowSums(store_x_test[1,,],na.rm=TRUE), col="blue", pch=19, 
cex=1) 
  points((1:(36)),100*rowSums(typeIerror_test[2,,],na.rm=TRUE)/rowSums(store_x_test[2,,],na.rm=TRUE), col="red", pch=19, 
cex=1) 
  points((1:(36)),100*rowSums(typeIerror_test[3,,],na.rm=TRUE)/rowSums(store_x_test[3,,],na.rm=TRUE), col="green", pch=19, 
cex=1) 
  points((1:(36)),100*rowSums(typeIerror_test[4,,],na.rm=TRUE)/rowSums(store_x_test[4,,],na.rm=TRUE), col="black", pch=19, 
cex=1) 
  points((1:(36)),100*rowSums(typeIerror_test[5,,],na.rm=TRUE)/rowSums(store_x_test[5,,],na.rm=TRUE), col="orange", pch=19, 
cex=1) 
  points((1:(36)),100*rowSums(typeIerror_test[6,,],na.rm=TRUE)/rowSums(store_x_test[6,,],na.rm=TRUE), col="yellow",  pch=19, 
cex=1) 
  legend(1,15,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
}#shows the Type I errors as a percentage of the total sample space 
 
{plot(c(1,36),c(0,80),type="n",main="Validation Type I Errors as % of All Identified Outages", xlab="Interval (minutes)", 
ylab="Percent Errors (%)",xaxt="n") 
  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .5,col.main="dark blue",cex.main=.9) 
lines((1:(36)),100*rowSums(typeIerror_test[1,,],na.rm=TRUE)/(rowSums(typeIerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_test[
1,,],na.rm=TRUE)), col="blue", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIerror_test[2,,],na.rm=TRUE)/(rowSums(typeIerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_test[
2,,],na.rm=TRUE)), col="red", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIerror_test[3,,],na.rm=TRUE)/(rowSums(typeIerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_test[
3,,],na.rm=TRUE)), col="green", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIerror_test[4,,],na.rm=TRUE)/(rowSums(typeIerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_test[
4,,],na.rm=TRUE)), col="black", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIerror_test[5,,],na.rm=TRUE)/(rowSums(typeIerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_test[
5,,],na.rm=TRUE)), col="orange", lty=1, lwd=4, pch=19) 
lines((1:(36)),100*rowSums(typeIerror_test[6,,],na.rm=TRUE)/(rowSums(typeIerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_test[
6,,],na.rm=TRUE)), col="yellow", lty=1, lwd=4, pch=19) 
points((1:(36)),100*rowSums(typeIerror_test[1,,],na.rm=TRUE)/(rowSums(typeIerror_test[1,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[1,,],na.rm=TRUE)), col="blue", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIerror_test[2,,],na.rm=TRUE)/(rowSums(typeIerror_test[2,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[2,,],na.rm=TRUE)), col="red", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIerror_test[3,,],na.rm=TRUE)/(rowSums(typeIerror_test[3,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[3,,],na.rm=TRUE)), col="green", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIerror_test[4,,],na.rm=TRUE)/(rowSums(typeIerror_test[4,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[4,,],na.rm=TRUE)), col="black", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIerror_test[5,,],na.rm=TRUE)/(rowSums(typeIerror_test[5,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[5,,],na.rm=TRUE)), col="orange", pch=19, cex=1) 
points((1:(36)),100*rowSums(typeIerror_test[6,,],na.rm=TRUE)/(rowSums(typeIerror_test[6,,],na.rm=TRUE)+rowSums(neg_neg_tes
t[6,,],na.rm=TRUE)), col="yellow",  pch=19, cex=1) 
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  legend(2.5,30,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
}#shows the Type I errors as a percentage of all identified outages (good negatives and bad negatives) 
 
{plot(c(1,36),c(75,100),type="n",main="Validation \"Good Match\" as % of Total Sample Space", xlab="Interval (minutes)", 
ylab="Percent Errors (%)",xaxt="n") 
  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  title(" \"X% of the total sample space that contains no errors (\"Good Match\") ",line = .5,col.main="dark blue",cex.main=.9) 
  chk=c("blue","red","green","black","orange","yellow") 
  for (i in 
1:6){lines((1:(36)),100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_tes
t[i,,],na.rm=TRUE)), col=chk[i], lty=1, lwd=4, pch=19) 
    
points((1:(36)),100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,
],na.rm=TRUE)), col=chk[i], pch=19, cex=1)} 
  legend(22,82,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
}#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd 
 
 
######NOT USED 
{plot(c(1,36),c(0,15),type="n",main="Validation Total Errors as % of Total Sample Space", xlab="Interval (minutes)", ylab="Percent 
Errors (%)",xaxt="n") 
  axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
  grid(NULL,NULL, lwd = 2) 
  title(" \"X% of the total sample space that contains errors ",line = .5,col.main="dark blue",cex.main=.9) 
  chk=c("blue","red","green","black","orange","yellow") 
  for (i in 1:6){lines((1:(36)),100-
(100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,],na.rm=TRUE
))), col=chk[i], lty=1, lwd=4, pch=19) 
    points((1:(36)),100-
(100*(rowSums(neg_neg_test[i,,],na.rm=TRUE)+rowSums(pos_pos_test[i,,],na.rm=TRUE))/(rowSums(store_x_test[i,,],na.rm=TRUE
))), col=chk[i], pch=19, cex=1)} 
  legend(25,15,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
         lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
}#shows how good at ID'ing the outages as a whole by compairing Errors 
 
##########bar charts 
{par(mfrow=c(3,2),xpd=F,mar=c(5,4,4,4)) 
for(i in 1:6){chk=order(-
(colSums(typeIIerror_test[i,,],na.rm=TRUE)+colSums(typeIerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE)) 
chk1=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")   
barplot(100*matrix(c(colSums(typeIIerror_test[i,,],na.rm=TRUE)[chk],colSums(typeIerror_test[i,,],na.rm=TRUE)[chk])/(colSums(sto
re_x_test[i,,],na.rm=TRUE)[chk]),nrow=2, byrow=TRUE), col=c("darkblue","red"), 
        ylim=c(0,50),space=0, axes=TRUE, main=paste("Pareto Chart of Errors by DataID as % of Total Values \nCombine 
every",chk1[i]), xlab="Data ID index", ylab="Percent (%)", legend=c("Type II Error","Type I Error"),args.legend=list(bty = 
"n",cex=.9)) 
grid() 
axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2) 
axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2],"    "),las=2,tck=-.05)}}#shows where and how big the errors are by percentage for 
all combinations 
 
{par(mfrow=c(3,2)) 
for(i in 1:6){chk=order(-
(colSums(typeIIerror_test[i,,],na.rm=TRUE)+colSums(typeIerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE)) 
chk1=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")   
barplot(out_mean_test[chk]/60, col=c("red"), ylim=c(0,800),space=0, axes=TRUE, main=paste("Mean Outage Length for Pareto 
Chart of Errors \nby DataID (", chk1[i],")"),  
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        xlab="Data ID index", ylab="Mean (hours)", legend="Mean Outage Length",args.legend=list(x=22, y=800,bty = "n",cex=.9)) 
grid() 
axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2) 
axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2],"    "),las=2,tck=-.05)}}#shows the mean outage length in the order found using total 
errors by percentage        
#COMBINE TO A SINGLE PLOT 2 wide by 3 deep 
 
{par(mfrow=c(3,2)) 
  for(i in 1:6){chk=order(-
(colSums(typeIIerror_test[i,,],na.rm=TRUE)+colSums(typeIerror_test[i,,],na.rm=TRUE))/colSums(store_x_test[i,,],na.rm=TRUE)) 
  chk1=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually")   
  barplot((day_test[chk,2]-day_test[chk,1])/(60*24*60*365), col=c("green"), ylim=c(0,(2500/365)),space=0, axes=TRUE, 
main=paste("Years of Data for Pareto Chart of Errors \nby DataID (", chk1[i],")"),  
          xlab="Data ID index", ylab="Length (years)") 
  grid() 
  axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2) 
  axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2],"    "),las=2,tck=-.05)}}#shows the mean outage length in the order found using 
total errors by percentage        
#COMBINE TO A SINGLE PLOT 2 wide by 3 deep 
 
{numdataid=22 
par(mfrow=c(1,1)) 
chk1=numeric(numdataid) 
  for(i in 1:numdataid) 
chk1[i]=(sum(typeIIerror_test[,,i],na.rm=TRUE)+sum(typeIerror_test[,,i],na.rm=TRUE))/sum(store_x_test[,,i],na.rm=TRUE) 
  chk=order(-chk1) 
  chk1=chk1[chk] 
  barplot(100*chk1, col=c("red"),ylim=c(0,25),space=0, axes=TRUE, main=paste("Pareto Chart of Total Errors by DataID as % of 
Total Values for All Combinations"), 
          xlab="Data ID index", ylab="Percent (%)", legend=c("Total (Type I & II) Error")) 
  grid() 
  axis(1,at=((1:11)*2)-1.5,labels=chk[((1:11)*2)-1],las=2) 
  axis(1,at=(1:11)*2-.5,labels=paste(chk[(1:11)*2],"    "),las=2,tck=-.05)} 

Ellsworth Air Force Base  

#################VALIDATE################ 
#requires "test_crit_val" from critval_sensitivity.R 
#library(readr) 
#EAFBrawdata <- read_delim("pecan/EAFBrawdata.txt","\t", escape_double = FALSE, col_types = cols(DATE = 
col_datetime(format = "%m/%d/%Y")), trim_ws = TRUE)#import the test data... format= %Y-%m-%d 
colnames(EAFBrawdata)=(c("X1","X2","X3"))#data is in daily intervals already!!! 
{dataidlist_EAFB=unlist(unique(EAFBrawdata[,3])) 
  numdataid=length(dataidlist_EAFB) 
  possible_combo_int=c(1,2,4,13,26,52) 
  store_x_EAFB=array(dim=c(6,numdataid)) 
  pos_pos_EAFB=array(dim=c(6,numdataid)) 
  neg_neg_EAFB=array(dim=c(6,numdataid)) 
  typeIIerror_EAFB=array(dim=c(6,numdataid)) 
  typeIerror_EAFB=array(dim=c(6,numdataid)) 
  outages_EAFB=array(dim=c(6,numdataid)) 
  outlengstr_EAFB=array(dim=c(numdataid,200)) 
  outloc_EAFB=array(dim=c(numdataid,20000)) 
  day_EAFB=array(dim=c(numdataid,2)) 
  duplicates_EAFB=numeric(numdataid) 
  minperyear=60*24*365 
  q=36 #q is the index for which interval width. EAFB only has dayily readings so only interval 36 (1440 minutes) is used 
}#creates the variables 
w=12#####TESTS 
{start_time=Sys.time() 
  for(w in 1:numdataid){ 
    run=subset(EAFBrawdata,EAFBrawdata$X3==as.numeric(dataidlist_EAFB[w])) #run is created for the individual DataID 
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    run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an 
outage or a meter malfunction 
    if(sum(duplicated(as.numeric(run$X1)))>0){duplicates_EAFB[w]=1#notifies if there is any duplicates in the specific DataID. 
hypothetically this is a malfunction and would need to be fixed  
    run=run[!duplicated(run$X1),]}#if there was a duplicate the 1st value is assumped to be correct and everything else is an error. 
    run=run[!is.na(run$X1),]#removes the rows that do not have a valid date 
    run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order 
    xleng=length(run$X1) 
     
    {i=1 
      j=1 
      while (i<2){chk=as.numeric(run[j,1]) 
      if (chk%%(60*60*24)==0){ 
        if (is.na(run[j,2])|run[j,2]==0) {j=j+1} #if the first day starts with a 0 or NA, move to the next day because the begining of data 
set is not clean 
        else{i=i+1}} 
      else {j=j+1}}#this function finds the first position in the data to being clean_date 
      k=j 
      clean_date=as.numeric(unlist(run[j:xleng,1])) 
    }#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0 
     
    xleng=length(clean_date)#new length with trimmed times 
    totalday=1+(clean_date[xleng]-clean_date[1])/(60*60*24) 
    day_EAFB[w,1]=as.Date(clean_date[1], origin="1970-01-01") 
    day_EAFB[w,2]=as.Date(clean_date[xleng], origin="1970-01-01") 
     
    {i=1 
      j=1 
      clean=numeric(totalday) 
      while (i<totalday+1){ 
        if(clean_date[1]+(60*24*60)*(i-1)-clean_date[j]==0){ 
          if(is.na(run[k,2])){clean[i]=0} 
          else{clean[i]=(run[k,2])} 
          k=k+1 
          i=i+1 
          j=j+1} 
        else{clean[i]=0 
        i=i+1}} 
    }#fills gaps in data with 0 energy usage 
    xleng=length(clean)#new length with filled in missing data 
    clean=unlist(clean) 
     
    #dates 2015-03-09 and 03-10 are days with missing data 
    {i=1#where are the 0s? 
      j=1 
      k=1 
      zeros=sort(which(clean==0)) #tells me which rows are 0! 
      if(length(zeros)>1){ 
        for (i in 1:(length(zeros)-1)){ 
          if (zeros[i]-zeros[i+1]==-1){j=j+1}  
          else{outlengstr_EAFB[w,k]=j 
          k=k+1 
          j=1} 
          outlengstr_EAFB[w,k]=j}}#last one! 
      else{if(length(zeros==1)){outlengstr_EAFB[w,1]=1} 
        else{outlengstr_EAFB[w,1]=0}} 
    }#finds outage lengths and and frequency 
    ##start collecting dates when outages happen 
    for (i in 1:length(zeros)) outloc_EAFB[w,i]=clean_date[1]+(zeros[i]-1)*60*60*24 
     
    #Usually we would change the interval length but 1 day is the maximum interval tested in this research 
     
    {int_leng_min=1440#only full day interval 
      int_day=(60*24)/int_leng_min #how many intervals in a single day 
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      x=xleng 
      zeros_new=zeros 
      zeros_new1=zeros_new 
      run_new=clean}#full day interval 
     
    run_new1=run_new 
    p=1####TEST 
    if(length(zeros_new)!=0){ 
      run_new=run_new1 
      {ddays=(as.numeric(clean_date[1])-1208232000)/(60*60*24)  #use of int_day in next line makes this function also usage for daily 
energy intervals 
        j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2008 every 3 months...each year add an additional day...each leap year add an additional day. 
        chk1=run_new[(j):x] 
        zchk1=which(chk1==0)#in case there is only one "0" and that zero is below the new start 
      }#starts data within a day of the the middle of Jan, Apr, Jul, Oct 
       
      {ddays=(as.numeric(clean_date[1])-1208232000)/(60*60*24) 
        j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2008 every 6 months...each year add an additional day...each leap year add an additional day. 
        chk2=run_new[(j):x] 
        zchk2=which(chk2==0)#in case there is only one "0" and that zero is below the new start 
        #cuts out any zeros that occur before j and re-indexs the values 
      }#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different 
categories 
      zscore=array(dim=c(length(zeros_new),6)) 
      chk=array(dim=c(length(zeros_new),6)) 
      for(p in 1:6){ 
        wk=possible_combo_int[p] #combine the data for "p" weeks 
         
        {if(wk==13){run_new=chk1 
        x=length(run_new) 
        zeros_new=zchk1} 
          if(wk==26){run_new=chk2 
          x=length(run_new) 
          zeros_new=zchk2}  
          if(wk==52){run_new=run_new1 
          x=length(run_new1) 
          zeros_new=zeros_new1}}#alters the data if looking at seasonal or bi-yearly combinations 
         
        combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364 
days/yr for calculations) 
        intmean=numeric(combo_yr) 
        intsd=numeric(combo_yr) 
        #must use 364 to keep whole weeks, starting and ending on the same day of the week!  The specific month or paticular "number 
date" are overlooked 
        #each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the 
next! and so on... 
        groups=numeric() 
        x_combo=floor(x/int_day) 
        x=x_combo*int_day#trims the energy usage data 
        if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[1:(min(which(zeros_new>x))-1)]}}#trim 
"zeros_new" as well, if there are zeros in the trim, zscore fails 
        n=ceiling(x/(364*int_day)) 
        run_new=run_new[1:(x)] 
         
        for (i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int_day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data 
        for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i])>=0))])} 
        for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean 
and SD are created by combining using "p"th weeks 
         
        if(length(zeros_new)!=0){ #alot of no 0s indicated 
          for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&5 for run_new could be shorter.... 
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          j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index 
          zscore[i,p]=(run_new[k]-intmean[j])/intsd[j]  #use the "new_run" that contains a 0, find its z score away from the mean. 
          chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the 0s at any interval 
          }#finds the standardized distance way from the mean (defined as zscores) of all the outages 
          store_x_EAFB[p,w]=x 
          typeIIerror_EAFB[p,w]=length(which(zscore[,p]>test_crit_val[p,q,10,2]))-
sum(chk[which(zscore[,p]>test_crit_val[p,q,10,2]),p]) #outputs the number of zeros that are larger than the "critical value", because 
"zscore" only contains outages,  
          #those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 then 
the outage can be ID'd by simply searching for 0s. 
          intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
          intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
          typeIerror_EAFB[p,w]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]),zeros_new))) 
          neg_neg_EAFB[p,w]=length(which(is.na(zscore[,p])!=1))-typeIIerror_EAFB[p,w]#any outage with a zscore equal to or less 
than the critical value is correctly ID'd as an outage (true reject the null) 
          pos_pos_EAFB[p,w]=x-neg_neg_EAFB[p,w]-typeIIerror_EAFB[p,w]-typeIerror_EAFB[p,w]#all other values are correctly 
ID'd no outage 
          #typeIerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating 
zeros) 
        }#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would be 
an error? 
        #THAT is good if there is a 0... but there probably isnt with daily energy usage... I just want to know how many outages the 
model thinks happend... 
        {intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
          intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
          outages_EAFB[p,w]=length(which(((run_new-intmeanopr)/intsdopr)<=test_crit_val[p,q,10,2]))}#outputs number of outages 
according to the numbers found in the Pecan street model building 
         
      }#end of P loop 
    }#end of STD DEV VS. OUTAGE 
  }#end of W loop 
  {out_num_EAFB=numeric(numdataid) 
    out_median_EAFB=numeric(numdataid) 
    out_mean_EAFB=numeric(numdataid) 
    for (i in 1:numdataid)out_num_EAFB[i]=length(outlengstr_EAFB[i,which(outlengstr_EAFB[i,]>0)]) 
    for (i in 1:numdataid)out_median_EAFB[i]=median(outlengstr_EAFB[i,which(outlengstr_EAFB[i,]>0)]) 
    for (i in 1:numdataid)out_mean_EAFB[i]=mean(outlengstr_EAFB[i,which(outlengstr_EAFB[i,]>0)]) 
    out_mean_total_EAFB=mean(outlengstr_EAFB[which(outlengstr_EAFB>0)]) 
    out_median_total_EAFB=median(outlengstr_EAFB[which(outlengstr_EAFB>0)]) 
  } 
  time1=Sys.time()-start_time 
  time1}#end of model validiation  
####Graph Code####  PRINT ALL AT 1000 pixels wide!!!!!!! 
#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))# 
Specify axis options within plot()  
 
  {chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks") 
  chk1=numeric(6) 
  for(i in 1:6) 
{chk1[i]=100*sum(typeIerror_EAFB[i,],na.rm=TRUE)/(sum(typeIerror_EAFB[i,],na.rm=TRUE)+sum(neg_neg_EAFB[i,],na.rm=TR
UE))} 
  barplot(chk1,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB Type I Errors as % of All Identified Outages",  
          xlab="Combinations", ylab="Percent Errors (%)", legend=c("Type I Error")) 
  title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .5,col.main="dark blue",cex.main=.9) 
  grid() 
  axis(1,at=(1:6)-.5,labels=chk[1:6]) 
  }#shows where and how big the errors are by percentage for all combinations 
   
####NOT USED (ITS ALL ZERO!!!) 
  {chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks") 
    chk1=numeric(6) 
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    for(i in 1:6) 
{chk1[i]=100*sum(typeIIerror_EAFB[i,],na.rm=TRUE)/(sum(typeIIerror_EAFB[i,],na.rm=TRUE)+sum(neg_neg_EAFB[i,],na.rm=T
RUE))} 
    barplot(chk1,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB Type II Errors as % of All known Outages",  
            xlab="Combinations", ylab="Percent Errors (%)", legend=c("Type II Error")) 
    title(" \"X% of actual outages that were not identified\" ",line = .5,col.main="dark blue",cex.main=.9) 
    grid() 
    axis(1,at=(1:6)-.5,labels=chk[1:6]) 
  }#THERE is NO Type II ERRORS!!! 
 
{chk=c("1 Week","2 Weeks","4 Weeks","13 Weeks","26 Weeks","52 Weeks") 
  chk1=numeric(6) 
  for(i in 1:6) 
{chk1[i]=100*(sum(neg_neg_EAFB[i,],na.rm=TRUE)+sum(pos_pos_EAFB[i,],na.rm=TRUE))/(sum(store_x_EAFB[i,],na.rm=TRUE
))} 
  barplot(chk1,col=c("red"), ylim=c(0,100),space=0, axes=TRUE, main="EAFB \"Good Match\" as % of Total Sample Space",  
          xlab="Combinations", ylab="Percent Correct (%)") 
  title(" \"X% of the total sample space that contains no errors (\"Good Match\") ",line = .5,col.main="dark blue",cex.main=.9) 
  grid() 
  axis(1,at=(1:6)-.5,labels=chk[1:6]) 
}#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd 
 
##########bar charts 
{ 
  {chk=sort(outloc_EAFB[which(is.na(outloc_EAFB)!=1)]) 
  class(chk)=c('POSIXt','POSIXct') 
  setdiff(1:2951,((chk1/(60*60*24))-14367))#which days didnt have an outage...93 days between May 2009 and May 2017 
  chk1=sort(outloc_EAFB[which(is.na(outloc_EAFB)!=1)]) 
  barplot(table((chk1/(60*60*24))-14367),xlim = c(1,2951),space = 0,main=paste("Outages in a Day"),ylab="Number of 
Outages",xlab="Date",axes =TRUE,xaxt='n', ann=FALSE) 
  axis(1,at=(1:8)*365-200,labels=c("Jan 10","Jan 11","Jan 12","Jan 13","Jan 14","Jan 15","Jan 16","Jan 17")) 
  }#code for day of outage #because its a day value...daylights savings time affects the output 
   
   {chk=order(-
(colSums(typeIIerror_EAFB[,],na.rm=TRUE)+colSums(typeIerror_EAFB[,],na.rm=TRUE))/colSums(store_x_EAFB[,],na.rm=TRUE
)) 
    barplot(out_mean_EAFB[chk], col=c("red"), ylim=c(0,25),space=0, axes=TRUE, main="Mean Outage Length in Order of Highest 
Errors",  
            xlab="Data ID index", ylab="Mean (days)", legend=c("Mean Outage Length"),args.legend=list(x=35, y=25,bty = "y")) 
    grid() 
    axis(1,at=((1:39)*2)-1.5,labels=chk[((1:39)*2)-1],las=2) 
    axis(1,at=(1:39)*2-.5,labels=paste(chk[(1:39)*2],"    "),las=2,tck=-.05)}#shows the mean outage length in the order found using 
total errors by percentage        
   
  {chk1=numeric(numdataid) 
    for(i in 1:numdataid) 
chk1[i]=(sum(typeIIerror_EAFB[,i],na.rm=TRUE)+sum(typeIerror_EAFB[,i],na.rm=TRUE))/sum(store_x_EAFB[,i],na.rm=TRUE) 
    chk=order(-chk1) 
    chk1=chk1[chk] 
    barplot(100*chk1, col=c("red"),ylim=c(0,10),space=0, axes=TRUE, main=paste("Pareto Chart of Total Errors by DataID as % of 
Total Values"), 
            xlab="Data ID index", ylab="Percent (%)", legend=c("Total (Type I & II) Error")) 
    grid() 
    axis(1,at=((1:39)*2)-1.5,labels=chk[((1:39)*2)-1],las=2) 
    axis(1,at=(1:39)*2-.5,labels=paste(chk[(1:39)*2],"    "),las=2,tck=-.05)} 
} 

Pecan Street Ideal Critical Value Sensitivity 

################MODEL BUILD################ 
#library(readr) 
#rawdata <- read_csv("pecan/rawdata.csv", col_names = FALSE) 
colnames(rawdata)=(c("X1","X2","X3")) 
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dataidlist=unlist(unique(rawdata[,3])) 
numdataid=length(dataidlist) #number of distinct data IDs=88 
possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440) 
possible_combo_int=c(1,2,4,13,26,52) 
day=array(dim=c(numdataid,2)) 
duplicates=numeric(numdataid) 
minperyear=60*24*365 
percent=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95) 
percent1=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95) 
crit_val=array(dim=c(6,36,numdataid,length(percent))) 
test_crit_val=array(dim=c(6,36,length(percent),length(percent1))) 
v=1#####TESTS 
w=1#####TESTS 
{start_time=Sys.time() 
  for(w in 1:numdataid){#for each DataID 
    run=subset(rawdata,rawdata$X3==as.numeric(dataidlist[w])) #run is created for the individual DataID 
    run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an 
outage or a meter malfunction 
    if(sum(duplicated(run$X1))>0){duplicates[w]=1#notifies if there is any duplicates in the specific DataID. hypothetically this is a 
malfunction and would need to be fixed  
    run=run[!duplicated(run$X1),]}#if there was a duplicate, the 1st value is assumped to be correct and everything else is an error. 
    run=run[!is.na(run$X1),]#removes the rows that do not have a valid date 
    run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order 
    xleng=length(run$X1) 
     
    {i=1 
      j=1 
      while (i<2){chk=as.numeric(run[j,1]) 
      if (chk%%(60*60*24)==60){ 
        if (is.na(run[j,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining 
of data set is not clean 
        else{i=i+1}} 
      else {j=j+1}}#this function finds the first position in the data to being clean_date 
      k=j 
      clean_date=as.numeric(unlist(run[j:xleng,1])) 
    }#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0 
     
    xleng=length(clean_date)#new length with trimmed times 
    totalmin=1+(clean_date[xleng]-clean_date[1])/60 
    day[w,1]=as.Date(clean_date[1], origin="1970-01-01") 
    day[w,2]=as.Date(clean_date[xleng], origin="1970-01-01") 
     
    {i=1 
      j=1 
      clean=numeric(totalmin) 
      while (i<totalmin+1){ 
        if(clean_date[1]+60*(i-1)-clean_date[j]==0){ 
          if(is.na(run[k,2])){clean[i]=0} 
          else{clean[i]=(run[k,2])} 
          k=k+1 
          i=i+1 
          j=j+1} 
        else{clean[i]=0 
        i=i+1}} 
    }#fills gaps in data with 0 energy usage 
    xleng=length(clean)#new length with filled in missing data 
    clean=unlist(clean) 
     
    {i=1#where are the 0s? 
      j=1 
      k=1 
      zeros=sort(which(clean==0)) #tells me which rows are 0! 
      if(length(zeros)>1){ 
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        for (i in 1:(length(zeros)-1)){ 
          if (zeros[i]-zeros[i+1]==-1){j=j+1}  
          else{outlengstr[w,k]=j 
          k=k+1 
          j=1} 
          outlengstr[w,k]=j}}#last one! 
      else{if(length(zeros==1)){outlengstr[w,1]=1} 
        else{outlengstr[w,1]=0}} 
    }#finds outage lengths and and frequency 
     
    q=36####TEST 
    for (q in 1:36){  #for each interval (36 different intervals) 
      int_leng_min=possible_int_leng_min[q]#tested interval in "q-th" minutes 
      int_day=(60*24)/int_leng_min #how many intervals in a single day 
      x=floor(xleng/int_leng_min) #combination rule....new length rounded down 
      zeros_new=unique(ceiling(zeros/int_leng_min)) 
      zeros_new1=zeros_new 
       
      {run_new=(sapply(1:x,function(i){ 
        o=(sapply(1:int_leng_min,function(j){ 
          (clean[int_leng_min*i-int_leng_min+j])})) 
        sum(o[1:int_leng_min]) 
      })) 
      }#combines usage data by the given interval (total energy usage) !!!!NO LONGER MIN/MIN!!!!! 
       
      run_new1=run_new 
      p=1####TEST 
      if(length(zeros_new)!=0){ 
        run_new=run_new1 
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day. 
          chk1=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk1=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk1=numeric()} 
            else{zchk1=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
        }#starts data within a day of the the middle of Jan, Apr, Jul, Oct 
         
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule 
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day. 
          chk2=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk2=numeric()} 
            else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
          #cuts out any zeros that occur before j and re-indexs the values 
        }#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different 
categories 
        zscore=array(dim=c(length(zeros_new),6)) 
        chk=array(dim=c(length(zeros_new),6)) 
        for(p in 1:6){ 
          wk=possible_combo_int[p] #combine the data for "p" weeks 
           
          {if(wk==13){run_new=chk1 
          x=length(run_new) 
          zeros_new=zchk1} 
            if(wk==26){run_new=chk2 
            x=length(run_new) 
            zeros_new=zchk2}  
            if(wk==52){run_new=run_new1 
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            x=length(run_new1) 
            zeros_new=zeros_new1}}#alters the data if looking at seasonal or bi-yearly combinations 
           
          combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364 
days/yr for calculations) 
          intmean=numeric(combo_yr) 
          intsd=numeric(combo_yr) 
          #must use 364 to keep whole weeks, starting and ending on the same day of the week!  The specific month or paticular "number 
date" are overlooked 
          #each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the 
next! and so on... 
          groups=numeric() 
          x_combo=floor(x/int_day) 
          x=x_combo*int_day 
          if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[1:(min(which(zeros_new>x))-1)]}}#trim 
"zeros_new" as well, if there are zeros in the trim, zscore fails 
          n=ceiling(x/(364*int_day)) 
          run_new=run_new[1:(x)] 
           
          for(i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int_day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data 
          for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i])>=0))])} 
          for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean 
and SD are created by combining using "p"th weeks 
           
          if(length(zeros_new)!=0){ 
            for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&5 for run_new could be shorter.... 
            j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index 
            zscore[i,p]=(run_new[k]-intmean[j])/intsd[j]  #use the "new_run" that contains a 0, find its z score away from the mean. 
            chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the 0s at any interval 
            }#finds the standardized distance way from the mean (defined as zscores) of all the outages 
            for(v in 1:length(percent)){ 
              crit_val[p,q,w,v]=zscore[order(-
zscore[which(is.na(zscore[,p])!=1),p]),p][ceiling(percent[v]*length(which(is.na(zscore[,p])!=1)))]##90% (or if <10 zeros... ((z-1)/z)% 
(less than 90%)) of the zeros are at or below this zscore 
              crit_val[p,q,w,v]=ifelse(crit_val[p,q,w,v]>0,0,crit_val[p,q,w,v]) 
              #scores are ordered high to low (because of the "-zscore") and then the value is chosen (95% is chosen 1st) 
            }#end of v loop 
          }#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would 
be an error? 
        }#end of P loop 
      }#end of STD DEV VS. OUTAGE 
    }}#end of W & Q loop 
  {for (i in 1:6){for (j in 1:36){for (v in 1:length(percent)){for (f in length(percent1):1){ 
    test_crit_val[i,j,v,11-f]=sort(crit_val[i,j,,v])[ceiling(numdataid*percent1[f])] 
#test_crit_val[combonaiton,interval,percentile_crit,percentile_idealcrit] 
    #low to high then chooses a number...in reverse (95% is chosen 1st) 
  }}}} 
  }#crit_val key metrics and error information 
   
  #{write.table(day, file = "C:/Users/Jared/Google Drive/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE) 
  #write.table(test_crit_val, file = "C:/Users/Jared/Google Drive/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = 
FALSE) 
  #write.table(day, file = "pecan/day.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code 
  #write.table(test_crit_val, file = "pecan/test_crit_val.txt", sep = "\t", row.names = FALSE, col.names = FALSE)#umbunto code 
  #}#print the tables that will be needed in validation and aggregation processes 
   
  time1=Sys.time()-start_time 
  time1}#end of model building code 
 
 
 
#################VALIDATE################ 
#requires "test_crit_val" from Model_Building.R 
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#library(readr) 
#testdata <- read_csv("pecan/testdata.txt", col_names = FALSE)#import the test data... format= '%Y-%m-%d %H:%M:%S-%z' 
#colnames(testdata)=(c("X1","X2","X3")) 
{dataidlist_test=unlist(unique(testdata[,3])) 
numdataid=length(dataidlist_test) 
possible_int_leng_min=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,72
0,1440) 
possible_combo_int=c(1,2,4,13,26,52) 
percent=c(.05,.15,.25,.35,.45,.55,.65,.75,.85,.95) 
store_x_test=array(dim=c(6,36,numdataid)) 
pos_pos_test=array(dim=c(6,36,numdataid,length(percent),length(percent1))) 
neg_neg_test=array(dim=c(6,36,numdataid,length(percent),length(percent1))) 
typeIIerror_test=array(dim=c(6,36,numdataid,length(percent),length(percent1))) 
typeIerror_test=array(dim=c(6,36,numdataid,length(percent),length(percent1))) 
outlengstr_test=array(dim=c(numdataid,1000000)) 
day_test=array(dim=c(numdataid,2)) 
duplicates_test=numeric(numdataid) 
minperyear=60*24*365}#creates the variables 
w=1#####TESTS 
{start_time=Sys.time() 
  for(w in 1:numdataid){#for each DataID 
    run=subset(testdata,testdata$X3==as.numeric(dataidlist_test[w])) #run is created for the individual DataID 
    run$X2[which(run$X2<0)]=0#clean negatives out and use 0. assumption is that negative usage is due to backfeeding of power in an 
outage or a meter malfunction 
    if(sum(duplicated(as.numeric(run$X1)))>0){duplicates_test[w]=1#notifies if there is any duplicates in the specific DataID. 
hypothetically this is a malfunction and would need to be fixed  
    run=run[!duplicated(run$X1),]}#if there was a duplicate the 1st value is assumped to be correct and everything else is an error. 
    run=run[!is.na(run$X1),]#removes the rows that do not have a valid date 
    run=run[order(run$X1),]#errors in the dataset save out of cronological order, this puts them in assending order 
    xleng=length(run$X1) 
     
    {i=1 
      j=1 
      while (i<2){chk=as.numeric(run[j,1]) 
      if (chk%%(60*60*24)==60){ 
        if (is.na(run[j,2])|run[j,2]==0) {j=j+60*24} #if the first full day starts with a 0 or NA, move to the next day because the begining 
of data set is not clean 
        else{i=i+1}} 
      else {j=j+1}}#this function finds the first position in the data to being clean_date 
      k=j 
      clean_date=as.numeric(unlist(run[j:xleng,1])) 
    }#this function creates dates as intergers and begins with the first full day of data that is not an NA or 0 
     
    xleng=length(clean_date)#new length with trimmed times 
    totalmin=1+(clean_date[xleng]-clean_date[1])/60 
    day_test[w,1]=as.Date(clean_date[1], origin="1970-01-01") 
    day_test[w,2]=as.Date(clean_date[xleng], origin="1970-01-01") 
     
    {i=1 
      j=1 
      clean=numeric(totalmin) 
      while (i<totalmin+1){ 
        if(clean_date[1]+60*(i-1)-clean_date[j]==0){ 
          if(is.na(run[k,2])){clean[i]=0} 
          else{clean[i]=(run[k,2])} 
          k=k+1 
          i=i+1 
          j=j+1} 
        else{clean[i]=0 
        i=i+1}} 
    }#fills gaps in data with 0 energy usage 
    xleng=length(clean)#new length with filled in missing data 
    clean=unlist(clean) 
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    {i=1#where are the 0s? 
      j=1 
      k=1 
      zeros=sort(which(clean==0)) #tells me which rows are 0! 
      if(length(zeros)>1){ 
        for (i in 1:(length(zeros)-1)){ 
          if (zeros[i]-zeros[i+1]==-1){j=j+1}  
          else{outlengstr_test[w,k]=j 
          k=k+1 
          j=1} 
          outlengstr_test[w,k]=j}}#last one! 
      else{if(length(zeros==1)){outlengstr_test[w,1]=1} 
        else{outlengstr_test[w,1]=0}} 
    }#finds outage lengths and and frequency 
     
    q=1####TEST 
    for (q in 1:36){  #for each interval (36 different intervals) 
      int_leng_min=possible_int_leng_min[q]#tested interval in "q-th" minutes 
      int_day=(60*24)/int_leng_min #how many intervals in a single day 
      x=floor(xleng/int_leng_min) #combination rule....new length rounded down 
      zeros_new=unique(ceiling(zeros/int_leng_min)) 
      zeros_new1=zeros_new 
       
      {run_new=(sapply(1:x,function(i){ 
        o=(sapply(1:int_leng_min,function(j){ 
          (clean[int_leng_min*i-int_leng_min+j])})) 
        sum(o[1:int_leng_min]) 
      })) 
      }#combines usage data by the given interval (total energy usage) !!!!NO LONGER MIN/MIN!!!!! 
       
      run_new1=run_new 
      p=1####TEST 
      if(length(zeros_new)!=0){ 
        run_new=run_new1 
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((91-floor(ddays%%(365/4))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule of 
15 April 2011 every 3 months...each year add an additional day...each leap year add an additional day. 
          chk1=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk1=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk1=numeric()} 
            else{zchk1=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
        }#starts data within a day of the the middle of Jan, Apr, Jul, Oct 
         
        {ddays=(as.numeric(clean_date[1])-1302840000)/(60*60*24) 
          j=((182-floor(ddays%%(365/2))+floor(ddays/(365))+ifelse(ddays<365,0,floor((365+ddays)/(365*4))))*int_day)+1 #multipule 
of 15 April 2011 every 6 months...each year add an additional day...each leap year add an additional day. 
          chk2=run_new[(j):x] 
          if(length(zeros)!=1 & 
zeros[length(zeros)]/int_leng_min>j){zchk2=unique(ceiling(zeros[(1+length(which(zeros<j*int_leng_min))):length(zeros)]/int_leng_
min))-j+1} 
          else{if ((zeros[1]/int_leng_min)<j){zchk2=numeric()} 
            else{zchk2=unique(ceiling(zeros[1]/int_leng_min))-j+1}}#in case there is only one "0" and that zero is below the new start 
          #cuts out any zeros that occur before j and re-indexs the values 
        }#important for SINE wave of outdoor temp to minimize variance in energy useage. place summer and winter in different 
categories 
        zscore=array(dim=c(length(zeros_new),6)) 
        chk=array(dim=c(length(zeros_new),6)) 
        for(p in 1:6){ 
          wk=possible_combo_int[p] #combine the data for "p" weeks 
           
          {if(wk==13){run_new=chk1 
          x=length(run_new) 
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          zeros_new=zchk1} 
            if(wk==26){run_new=chk2 
            x=length(run_new) 
            zeros_new=zchk2}  
            if(wk==52){run_new=run_new1 
            x=length(run_new1) 
            zeros_new=zeros_new1}}#alters the data if looking at seasonal or bi-yearly combinations 
           
          combo_yr=ifelse(x>365*int_day,floor(364*int_day/(wk*7)),ceiling(x/(7*wk)))#how many combinations in a year (using 364 
days/yr for calculations) 
          intmean=numeric(combo_yr) 
          intsd=numeric(combo_yr) 
          #must use 364 to keep whole weeks, starting and ending on the same day of the week!  The specific month or paticular "number 
date" are overlooked 
          #each year the combination will continue leaving an additional day to the next year... the following year will leave 2 days to the 
next! and so on... 
          groups=numeric() 
          x_combo=floor(x/int_day) 
          x=x_combo*int_day 
          if(length(zeros_new)>0){if (tail(zeros_new,n=1)>x){zeros_new=zeros_new[1:(min(which(zeros_new>x))-1)]}}#trim 
"zeros_new" as well, if there are zeros in the trim, zscore fails 
          n=ceiling(x/(364*int_day)) 
          run_new=run_new[1:(x)] 
           
          for(i in 1:combo_yr) {groups[i]=list(sapply(1:n,function(y){run_new[int_day*sequence(7*wk)-int_day+i+((y-
1)*int_day*364)]}))}#creates a pattern for the combination to create groups of data 
          for (i in 1:combo_yr) {intsd[i]=sd(unlist(groups[i])[(which(unlist(groups[i])>=0))])} 
          for (i in 1:combo_yr) {intmean[i]=mean(unlist(groups[i])[(which(unlist(groups[i])>=0))])}#for a given data interval (q), a mean 
and SD are created by combining using "p"th weeks 
           
          if(length(zeros_new)!=0){ 
            for (i in 1:length(zeros_new)) {k=zeros_new[i] #p=4&5 for run_new could be shorter.... 
            j=ifelse(k%%combo_yr==0,combo_yr,k%%combo_yr)#if the remainer is 0, i want the "combo_yr"th index not "0"th index 
            zscore[i,p]=(run_new[k]-intmean[j])/intsd[j]  #use the "new_run" that contains a 0, find its z score away from the mean. 
            chk[i,p]=ifelse(run_new[k]==0,1,0)#if run_new=0 then it is already a known outage by simply counting the 0s at any interval 
            }#finds the standardized distance way from the mean (defined as zscores) of all the outages 
            store_x_test[p,q,w]=x 
            intsdopr=rep(intsd,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            intmeanopr=rep(intmean,ceiling(x/combo_yr))[1:x]#operator to make calculations quicker 
            for(v in 1:length(percent)){for(f in 1:length(percent1)){ 
              typeIIerror_test[p,q,w,v,f]=length(which(zscore[,p]>test_crit_val[p,q,v,f]))-
sum(chk[which(zscore[,p]>test_crit_val[p,q,v,f]),p]) #outputs the number of zeros that are larger than the "critical value", because 
"zscore" only contains outages,  
              #those indicated are not ID'd as outages. also if there are any zscores that do not make the cut BUT have a "run_new" of 0 
then the outage can be ID'd by simply searching for 0s. 
              typeIerror_test[p,q,w,v,f]=ifelse(length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,v,f]),zeros_new))==0,0,length(setdiff(which(((run_new-
intmeanopr)/intsdopr)<=test_crit_val[p,q,v,f]),zeros_new))) 
              neg_neg_test[p,q,w,v,f]=length(which(is.na(zscore[,p])!=1))-typeIIerror_test[p,q,w,v,f]#any outage with a zscore equal to or 
less than the critical value is correctly ID'd as an outage (true reject the null) 
              pos_pos_test[p,q,w,v,f]=x-neg_neg_test[p,q,w,v,f]-typeIIerror_test[p,q,w,v,f]-typeIerror_test[p,q,w,v,f]#all other values are 
correctly ID'd no outage 
            }}#end of v & F loop 
             
            #typeIerror finds the percentage of non-zero containing usages that are incorrectly highlighted using crit_val (when locating 
zeros) 
          }#IF everything below crit_val was assumed to be an outage... what percentage of highlighted data from the entire base would 
be an error? 
        }#end of P loop 
      }#end of STD DEV VS. OUTAGE 
    }}#end of W & Q loop 
  {out_num_test=numeric(numdataid) 
    out_median_test=numeric(numdataid) 
    out_mean_test=numeric(numdataid) 
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    for (i in 1:numdataid)out_num_test[i]=length(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    for (i in 1:numdataid)out_median_test[i]=median(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    for (i in 1:numdataid)out_mean_test[i]=mean(outlengstr_test[i,which(outlengstr_test[i,]>0)]) 
    out_mean_total_test=mean(outlengstr_test[which(outlengstr_test>0)]) 
    out_median_total_test=median(outlengstr_test[which(outlengstr_test>0)]) 
  } 
  time1=Sys.time()-start_time 
  time1}#end of model validiation  
####Graph Code####  PRINT ALL AT 1000 pixels wide!!!!!!! 
#plot(x, y, main="title", sub="subtitle", xlab="X-axis label", ylab="y-axix label", xlim=c(xmin, xmax), ylim=c(ymin, ymax))# 
Specify axis options within plot()  
{ 
  setwd("C:/Users/Jared/Google Drive/01-Erickson - Thesis/1-Working Docs/Data/Pecan/Outputs") 
  #####THESE ARE ONLY FOR ONE PART OF THE ANALYSIS..... 
  #{j=10 
  par(mfrow=c(1,1),xpd=T,mar=c(5,4,4,9)) 
    for(j in 1:1){ 
    chk1=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually") 
    chk2=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th 
Percentile","25th Percentile","15th Percentile","5th Percentile") 
    chk3=c("blue","red","green","black","orange","yellow") 
    for(k in 1:1){ 
    #{k=2 
     #jpeg(filename = paste("crit_",k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750) 
       
      plot(c(1,36),c(-7,-1),type="n",main=paste("Ideal Critical Values \nFound Using the",chk2[k],"of the",chk2[j]), xlab="Interval 
(minutes)", ylab="Critical Value",xaxt="n") 
      axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
      grid(NULL,NULL, lwd = 2) 
      for(i in 1:6){ 
        lines((1:(36)),test_crit_val[i,,j,k], col=chk3[i], lty=1, lwd=4, pch=19) 
        points((1:(36)),test_crit_val[i,,j,k], col=chk3[i], pch=19, cex=1)} 
      legend(38,-3,chk1,cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
             lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=chk3)#imports a legend for the plot 
      #dev.off() 
    } 
  }#shows the specified "Critical Values" for each percentile 
   
   
  { 
    { 
    k=2 
    chk3=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th 
Percentile","25th Percentile","15th Percentile","5th Percentile") 
    #for(j in 1:10){ 
    {j=10 
      jpeg(filename = paste("TIE_",k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750) 
      par(mfrow=c(1,1),xpd=T,mar=c(5,4,4,9)) 
      plot(c(1,36),c(0,100),type="n",main=paste("Type I Errors as % of Identified Outages \nFound Using the",chk3[k],"of 
the",chk3[j]), xlab="Interval (minutes)", ylab="Percent Errors (%)",xaxt="n") 
      axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
      grid(NULL,NULL, lwd = 2) 
      title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .3,col.main="dark blue",cex.main=.9) 
      chk=c("blue","red","green","black","orange","yellow") 
      for (i in 
1:6){lines((1:(36)),(100*(rowSums(typeIerror_test[i,,,j,k],na.rm=TRUE)/(rowSums(typeIerror_test[i,,,j,k],na.rm=TRUE)+rowSums(n
eg_neg_test[i,,,j,k],na.rm=TRUE)))), col=chk[i], lty=1, lwd=4, pch=19) 
        
points((1:(36)),(100*(rowSums(typeIerror_test[i,,,j,k],na.rm=TRUE)/(rowSums(typeIerror_test[i,,,j,k],na.rm=TRUE)+rowSums(neg_
neg_test[i,,,j,k],na.rm=TRUE)))), col=chk[i], pch=19, cex=1)} 
      legend(38,60,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
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             lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
      dev.off() 
    } 
    }#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd 
     
    {k=2 
      chk3=c("95th Percentile","85th Percentile","75th Percentile","65th Percentile","55th Percentile","45th Percentile","35th 
Percentile","25th Percentile","15th Percentile","5th Percentile") 
      #for(j in 1:10){ 
      {j=10 
        jpeg(filename = paste("TIIE_",k,"of",j,".jpg"),width = 7.5, height = 7.5, units ="in",res = 750) 
        par(mfrow=c(1,1),xpd=T,mar=c(5,4,4,9)) 
        plot(c(1,36),c(0,12),type="n",main=paste("Type II Errors as % of Known Outages \nFound Using the",chk3[k],"of the",chk3[j]), 
xlab="Interval (minutes)", ylab="Percent Errors (%)",xaxt="n") 
        axis(side=1, at=1:36, 
labels=c(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,32,36,40,45,48,60,72,80,90,96,120,144,160,180,240,288,360,480,720,1440)) 
        grid(NULL,NULL, lwd = 2) 
        title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9) 
        chk=c("blue","red","green","black","orange","yellow") 
        for (i in 
1:6){lines((1:(36)),(100*(rowSums(typeIIerror_test[i,,,j,k],na.rm=TRUE))/(rowSums(typeIIerror_test[i,,,j,k],na.rm=TRUE)+rowSums
(neg_neg_test[i,,,j,k],na.rm=TRUE))), col=chk[i], lty=1, lwd=4, pch=19) 
          
points((1:(36)),(100*(rowSums(typeIIerror_test[i,,,j,k],na.rm=TRUE))/(rowSums(typeIIerror_test[i,,,j,k],na.rm=TRUE)+rowSums(ne
g_neg_test[i,,,j,k],na.rm=TRUE))), col=chk[i], pch=19, cex=1)} 
        legend(38,7,c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 
Weeks/Annually"),cex=.7,y.intersp=1,title=("SD/Mean Combinations"), 
               lty=c(1,1,1,1,1,1),lwd=c(5,5,5,5,5,5),col=c("blue","red","green","black","orange","yellow"))#imports a legend for the plot 
        dev.off() 
      } 
    } 
  }#shows how good at ID'ing the outages as a whole by compairing Positive ID with total ID'd 
  ####sensitivity!!### 
  {   
    par(xpd=T,mar=c(5, 4, 4, 2) + 0.1) 
    #line graph instead of the bar graph 
    {par(mfrow=c(1,1)) 
      j=1 
      chk=character() 
      chk=c("gray1","gray6","gray11","gray16","gray21","gray26","gray31","gray36","gray41","gray46") 
      chk1=numeric() 
      for(f in 1:10){for(v in 1:10){chk1[j]=100*(sum(typeIIerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm = 
T)+sum(typeIIerror_test[,,,v,f],na.rm = T)) 
      j=j+1}} 
      plot(c(1,10),c(0,.165),type="n",main=paste("Type II Errors as % of Known Outages for all Combinations and Intervals"),xlab = 
"Ideal Critical Value", ylab="Percent Errors (%)") 
      for(i in 1:10){lines(1:10,chk1[(i-1)*10+(1:10)], col=chk[i], lty=1, lwd=4, pch=19) 
        points(1:10,chk1[(i-1)*10+(1:10)], col=chk[i], pch=19, cex=1)} 
      title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9) 
      grid() 
    } 
     
    {par(mfrow=c(1,1)) 
      j=1 
      chk1=numeric() 
      for(f in 1:10){for(v in 1:10){chk1[j]=100*(sum(typeIIerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm = 
T)+sum(typeIIerror_test[,,,v,f],na.rm = T)) 
      j=j+1}} 
      barplot(chk1,col=c(rep("black",10),rep("light gray",10)),main=paste("Type II Errors as % of Known Outages for all Combinations 
and Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent Errors (%)") 
      title(" \"X% of actual outages that were not identified\" ",line = .3,col.main="dark blue",cex.main=.9) 
      axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe 
lowest percentile \n(most negative value)")) 
    } #THIS SHOWS HOW SMALL A NUMBER OF TYPE II Errors there really are compared to type I 
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    {par(mfrow=c(1,1)) 
      j=1 
      chk1=numeric() 
      for(f in 1:10){for(v in 1:10){chk1[j]=100*(sum(typeIerror_test[,,,v,f],na.rm = T))/(sum(neg_neg_test[,,,v,f],na.rm = 
T)+sum(typeIerror_test[,,,v,f],na.rm = T)) 
      j=j+1}} 
      barplot(chk1,col=c(rep("black",10),rep("light gray",10)),ylim = c(0,100),main=paste("Type I Errors as % of Identified Outages for 
all Combinations and Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent Errors (%)") 
      title(" \"X% of the identified outages were incorrectly specified as an outage\" ",line = .3,col.main="dark blue",cex.main=.9) 
      axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe 
lowest percentile \n(most negative value)")) 
    } 
     
    {par(mfrow=c(1,1)) 
      j=1 
      chk1=numeric() 
      chk2=numeric() 
      for(f in 1:10){for(v in 1:10){chk1[j]=(sum(typeIIerror_test[,,,v,f],na.rm = T)) 
      chk2=chk1/max(chk1) 
      j=j+1}} 
      barplot(100*chk2,col=c(rep("black",10),rep("light gray",10)),main=paste("% of Max Type II Errors for all Combinations and 
Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)") 
      title(" \"X% of the max total errors for all combinations and intervals\" ",line = .3,col.main="dark blue",cex.main=.9) 
      axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe 
lowest percentile \n(most negative value)")) 
    } 
    {par(mfrow=c(1,1)) 
      j=1 
      chk1=numeric() 
      chk3=numeric() 
      for(f in 1:10){for(v in 1:10){chk1[j]=(sum(typeIerror_test[,,,v,f],na.rm = T)) 
      chk3=chk1/max(chk1) 
      j=j+1}} 
      barplot(100*chk3,col=c(rep("black",10),rep("light gray",10)),main=paste("% of Max Type I Errors for all Combinations and 
Intervals"),space = 0,xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)") 
      title(" \"X% of the max total errors for all combinations and intervals\" ",line = .3,col.main="dark blue",cex.main=.9) 
      axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","smallest of \nthe 
lowest percentile \n(most negative value)")) 
    } 
    { par(xpd=T,mar=c(5, 4, 4, 2) + 0.1) 
       
      barplot(100*matrix(c(chk3,chk2),nrow=2, byrow=TRUE),col=c("red","dark blue"),ylim=c(0,120) ,main=paste("% of Max Errors 
for all Combinations and Intervals"),space = 0,legend=c("Type I Error","Type II Error"), 
             args.legend=list(x=95,y=125,bty = "y",cex=.9),xlab = "Ideal Critical Value", ylab="Percent of Maximum Errors (%)") 
      axis(side=1, at=c(1,100)-.5,mgp=c(0,3,0), labels=c("Largest of \nthe high percentile\n(least negative value)","Smallest of \nthe 
lowest percentile \n(most negative value)")) 
    } 
    sort(chk2)[1]#1.2%   BEST FOR TYPE II ERRORS 
    order(chk2)[1]#1 (95% then 95% of the 95%!!) (v=1,f=1) 
    sort(chk3)[1]#0.1%  BEST FOR TYPE I ERRORS 
    order(chk3)[1]#100 (5% then 5% of the 5%!!) (v=10,f=10) 
     
    sort(chk2+chk3)[1]#73.1% BEST FOR lowest amount of TYPE I and TYPE II ERRORS 
    order(chk2+chk3)[1]# (65% then 85% of the 65%!!) (v=5,f=2) 
    chk2[20]#24% type II 
    chk3[20]#49% type I 
  } # this was before putting in a 0 block for critical value calculation 
  #23.0% best reduction of TIIE .18% best reduction of TIE (same locations) 
  #91.2% lowest combine (out of 200%; worst situation for both) 48.8% of max for TIIE...42.4% of max for TIE... position(v=10,f=2) 
85% second percentile of the 5% first percentile 
   
  sum(typeIerror_test[,,,,],na.rm = T)/(sum(typeIerror_test[,,,,],na.rm = T)+sum(typeIIerror_test[,,,,],na.rm = T))#99.96% of errors are 
type I errors 



www.manaraa.com

134 

 

  v=1 
  f=1 
  sum(typeIerror_test[,,,v,f],na.rm = T)/(sum(typeIerror_test[,,,v,f],na.rm = T)+sum(typeIIerror_test[,,,v,f],na.rm = T))#99.9998% of 
errors are type I errors 
  v=10 
  f=10 
  sum(typeIerror_test[,,,v,f],na.rm = T)/(sum(typeIerror_test[,,,v,f],na.rm = T)+sum(typeIIerror_test[,,,v,f],na.rm = T))#88.86% of 
errors are type I errors 
  v=10 
  f=2 
  sum(typeIerror_test[,,,v,f],na.rm = T)/(sum(typeIerror_test[,,,v,f],na.rm = T)+sum(typeIIerror_test[,,,v,f],na.rm = T))#99.992% of 
errors are type I errors 
  { 
  m=1 
  Ideal_Critical_Value=numeric( ) 
  for(j in 1:10){ for(i in 1:10){Ideal_Critical_Value[m]=mean(test_crit_val[,,i,j]) 
  m=m+1}} 
  m=1 
  errors=numeric( ) 
  for(j in 1:10){ for(i in 1:10){errors[m]=sd(test_crit_val[,,i,j]) 
  m=m+1}} 
  m=data.frame(errorm,errors) 
  percentile=1:100 
  library(plotly) 
  plot_ly(type = 'scatter',x=percentile,y=~Ideal_Critical_Value,mode='markers',error_y=~list(value = errors,color = '#000000'))%>% 
    layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='percentile',showticklabels = F)),yaxis=(list(title='Ideal 
Critical Value')),title='Ideal Critical Value for Each Possible Percentile') 
   
  }#all percentiles are represented 
   
  {m=1 
    errorm=numeric( ) 
    { for(i in 1:10){errorm[m]=mean(test_crit_val[,,i,]) 
    m=m+1}} 
    m=1 
    errors=numeric( ) 
    { for(i in 1:10){errors[m]=sd(test_crit_val[,,i,]) 
    m=m+1}} 
     
    m=1 
    errorm=numeric( ) 
    { for(i in 1:10){errorm[m]=mean(test_crit_val[,,,i]) 
    m=m+1}} 
    m=1 
    errors=numeric( ) 
    { for(i in 1:10){errors[m]=sd(test_crit_val[,,,i]) 
    m=m+1}} 
    plot_ly(type = 'scatter',x=1:10,y=~errorm,mode='markers',error_y=~list(value = errors,color = '#000000')) 
    m=data.frame(errorm,errors)}#averages over one set of percentiles 
   
  { 
    typeI=matrix(nrow = 36,ncol = 6) 
    for(j in 1:36){ for(i in 
1:6){typeI[j,i]=sum(typeIerror_test[i,j,,,],rm.na=T)/(sum(typeIerror_test[i,j,,,],rm.na=T)+sum(neg_neg_test[i,j,,,]))}} 
    typeII=matrix(nrow = 36,ncol = 6) 
    for(j in 1:36){ for(i in 
1:6){typeII[j,i]=sum(typeIIerror_test[i,j,,,],rm.na=T)/(sum(typeIIerror_test[i,j,,,],rm.na=T)+sum(neg_neg_test[i,j,,,]))}} 
     
    y=1:36  
    x=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually") 
    plot_ly(x=x,y=y,z=100*typeI,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='Combination')),yaxis=(list(title='Interval 
Index')),title='Heatmap of Type I Errors for All Percentiles \nby Combination and Interval') 
    y=1:36  
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    x=c("1 Week","2 Weeks","4 Weeks/Monthly","13 Weeks/Seasonally","26 Weeks/Bi-Annually","52 Weeks/Annually") 
    plot_ly(x=x,y=y,z=100*typeII,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='Combination')),yaxis=(list(title='Interval 
Index')),title='Heatmap of Type II Errors for All Percentiles \nby Combination and Interval') 
  }#Heatmaps of best intervals and combos 
   
  { 
    typeI=matrix(nrow = 10,ncol = 10) 
    for(j in 1:10){ for(i in 
1:10){typeI[j,i]=sum(typeIerror_test[,,,i,j],rm.na=T)/(sum(typeIerror_test[,,,i,j],rm.na=T)+sum(neg_neg_test[,,,i,j]))}} 
    typeII=matrix(nrow = 10,ncol = 10) 
    for(j in 1:10){ for(i in 
1:10){typeII[j,i]=sum(typeIIerror_test[,,,i,j],rm.na=T)/(sum(typeIIerror_test[,,,i,j],rm.na=T)+sum(neg_neg_test[,,,i,j]))}} 
     
    y=1:10  
    x=1:10 
    plot_ly(x=x,y=y,z=100*typeI,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='Combination')),yaxis=(list(title='Interval 
Index')),title='Heatmap of Type I Errors for All Percentiles \nby Combination and Interval') 
    y=1:10  
    x=1:10 
    plot_ly(x=x,y=y,z=100*typeII,type = 'heatmap',colorbar=(list(title="Percentage \nof Errors (%)",nticks=10)))%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(title='Combination')),yaxis=(list(title='Interval 
Index')),title='Heatmap of Type II Errors for All Percentiles \nby Combination and Interval') 
  }#Heatmaps of best intervals and combos 
  {typeI_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typeI_sumhouse[i,j,k,l]=sum(typeIerror_test[i,j,,k,l],rm.na=T)}}}} 
    typeII_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typeII_sumhouse[i,j,k,l]=sum(typeIIerror_test[i,j,,k,l],rm.na=T)}}}} 
    storex_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){storex_sumhouse[i,j,k,l]=sum(store_x_test[i,j,],rm.na=T)}}}} 
    length(which(chk$dim1==6  & chk$dim3>=9 & chk$dim4==10))#51 of the 216 meet these specifications 
    min((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse)#21,600 options...... 
    chk1=sort((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse)[216]#.01012645... TOP 1% .... errors per interval 
    chk=data.frame(which((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse<=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Total Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Total Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Total Errors by 1st Percentile') 
    plot_ly(data=chk,x=chk$dim4, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Total Errors by 2nd Percentile') 
    (typeI_sumhouse[6,8,10,10])/(storex_sumhouse[6,8,10,10])*60*24*365 #minutes of error per year 
    (typeII_sumhouse[6,8,10,10])/(storex_sumhouse[6,8,10,10])*60*24*365 #minutes of error per year 
    chk1=sort((typeI_sumhouse)/storex_sumhouse)[216]#.009055... TOP 10 % 
    chk=data.frame(which((typeI_sumhouse)/storex_sumhouse<=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram',nbinsx =6)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type I Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type I Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram',nbinsx =10)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type I Errors by Percentile') 
     
    plot_ly(data=chk,x=chk$dim4, type='histogram',nbinsx =10,marker=list(line=list(width=0d0)))%>% 
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      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type I Errors by 2nd Percentile') 
     
    (typeI_sumhouse[6,26,10,10])/(storex_sumhouse[6,26,10,10])*60*24*365 #minutes of error per year 
    (typeII_sumhouse[6,26,10,10])/(storex_sumhouse[6,26,10,10])*60*24*365 #minutes of error per year 
     
    chk1=sort((typeII_sumhouse)/storex_sumhouse)[216]#.0000324... TOP 10 % 
    chk=data.frame(which((typeII_sumhouse)/storex_sumhouse<=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram',nbinsx =6)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type II Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type II Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram',nbinsx =10)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type II Errors by Percentile') 
    plot_ly(data=chk,x=chk$dim4, type='histogram',nbinsx =10)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 1% Lowest Type II Errors by 2nd Percentile') 
   
    chk3=numeric(400) 
    for(i in 1:400)chk3[i]=typeI_sumhouse[chk[i,1],chk[i,2],chk[i,3],chk[i,4]] 
    order(chk3)[c(1)] 
    (typeI_sumhouse[6,1,10,10])/(storex_sumhouse[6,1,10,10])*60*24*365 #minutes of error per year 
    (typeII_sumhouse[6,1,10,10])/(storex_sumhouse[6,1,10,10])*60*24*365 #minutes of error per year 
    }#histograms of top 10% options 
   
  {typeI_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typeI_sumhouse[i,j,k,l]=sum(typeIerror_test[i,j,,k,l],rm.na=T)}}}} 
    typeII_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){typeII_sumhouse[i,j,k,l]=sum(typeIIerror_test[i,j,,k,l],rm.na=T)}}}} 
    storex_sumhouse=array(dim = c(6,36,10,10)) 
    for(j in 1:36){ for(i in 1:6){for(k in 1:10){for(l in 1:10){storex_sumhouse[i,j,k,l]=sum(store_x_test[i,j,],rm.na=T)}}}} 
    min((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse)#21,600 options...... 
    chk1=sort((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse)[21600-2160]#.51401... BOTTOM 10 % 
    chk=data.frame(which((typeI_sumhouse+typeII_sumhouse)/storex_sumhouse>=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Total Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram',nbinsx =36)%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Total Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Total Errors by Percentile') 
    plot_ly(data=chk,x=chk$dim4, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Total Errors by 2nd Percentile') 
    chk1=sort((typeI_sumhouse)/storex_sumhouse)[21600-2160]#.513791... BOTTOM 10 % 
    chk=data.frame(which((typeI_sumhouse)/storex_sumhouse>=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type I Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4,nbinsx =36),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type I Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type I Errors by Percentile') 
    plot_ly(data=chk,x=chk$dim4, type='histogram')%>% 
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      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type I Errors by 2nd Percentile') 
    chk1=sort((typeII_sumhouse)/storex_sumhouse)[21600-2160]#.001938... BOTTOM 10 % 
    chk=data.frame(which((typeII_sumhouse)/storex_sumhouse>=chk1,arr.ind=TRUE)) 
    plot_ly(data=chk,x=chk$dim1, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 
4),xaxis=(list(range=list(.5,6.5),title='Combination')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type II Errors by 
Combination') 
    plot_ly(data=chk,x=chk$dim2, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4,nbinsx =36),xaxis=(list(range=list(.5,36.5),title='Interval 
Index')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type II Errors by Interval') 
    plot_ly(data=chk,x=chk$dim3, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=list(.5,10.5),title='1st 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type II Errors by Percentile') 
 
    plot_ly(data=chk,x=chk$dim4, type='histogram')%>% 
      layout(margin=list(l = 80,r = 80,b = 100,t = 80, pad = 4),xaxis=(list(range=c(.5,10.5),title='2nd 
Percentile')),yaxis=(list(title='count')),title='Histogram of Top 10% Largest Type II Errors by 2nd Percentile') 
  }#histograms of BOTTOM 10% options 
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Appendix 3. Pecan Street Ideal Critical Value Sensitivity- Critical Value Graphs for 95th Second Percentile 
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Appendix 4. Pecan Street Ideal Critical Value Sensitivity- Critical Value Graphs for 95th First Percentile 
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Appendix 5. Pecan Street Ideal Critical Value Sensitivity -Reduction of Type I Errors 
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Appendix 6. Pecan Street Ideal Critical Value Sensitivity -Reduction of Type II Errors 
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Appendix 7. MITLL Electrical System Architectures 
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